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The performance of experts in various domains has become an important
topic of psychological research, especially since the pioneering study of
chessmasters by de Groot (1946). This research has shown that expertise
depends on acquiring large stores of relevant knowledge that are then
accessible for use within the expert domain. The magnitude and nature of
this knowledge has been investigated, as well as the way in which experts
come to acquire it (Ericsson & Staszewski, 1989). Today we know that expert
behavior combines (a) the abilities to recognize key features of situations
and to access information in memory that is relevant to them with (b) the
ability to solve problems by heuristic search in appropriate problem spaces
(Newell & Simon, 1972).

The first ability underlies expert capacity for solving problems of famil-
iar types rapidly and without much explicit analysis (the terms instantly
and intuitively are often applied). The second ability underlies expert capac-
ity for solving problems that require more systematic, and sometimes very
extensive, analysis. In practice, most problems that an expert encounters
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call on a closely interwoven combination of recognition and search proc-
esses. Because both kinds of processes draw extensively on domain
knowledge, experts are usually unable to behave “expertly” when con-
fronted with problems outside their domains.

This general, but not very precise, characterization of expertise as re-
vealed by research explains the general mechanisms and processes that
make expert behavior possible. It does not explain how the mechanisms
and processes of the human brain support the expert’s functioning; nor
does it explain how expert knowledge and processes are learned. To link
the phenomena of expertise with the mechanisms for their implementation
and with the expert’s knowledge base, we need more than a description of
the phenomena; we need rigorous models of cognitive processes that are
consistent with both what is known about expertise and our general knowl-
edge of human perception, memory, problem solving, and learning. Such
models now exist, in rather extensive form, at the level of information
processes (symbolic processes). As yet, we have little knowledge about how
the information-processing models are implemented neurologically.

In the first section of this chapter, we enlarge the very broad picture we
have just sketched of the nature of expertise. In the second section, we
describe a model of human perception, learning, memory, and search that
provides an explanation for expert behavior, and of the learning processes
that are used in the acquisition of expertise. The models of expert perform-
ance and leamning employ information-processing mechanisms whose
presence, parameters, and functioning in human cognition have been vali-
dated by a substantial body of converging evidence, most of it not derived
directly from research on expertise. (For the perception and memory part
of the picture see especially Feigenbaum & Simon, 1984, and Richman,
Staszewski & Simon, 1995; for the problem-solving part, see Newell &
Simon, 1972, and Newell, 1990).

We have little to say, except by way of occasional comment, about the
realization of these cognitive processes in the physiological mechanisms of
the human brain, for, as we have remarked, the linkage between the
information-processing level and the level of neuronal structures and proc-
esses is still very sketchy and incomplete.

THE NATURE OF EXPERT PERFORMANCE

Definition of Expertise

In research on expertise, an expert is usually defined in a very pragmatic
way as someone who performs at the level of an experienced professional:
an MD in medicine, a Master or Grandmaster in chess, an experienced
systems programmer, a practicing attorney, an engineer employed in de-
sign, and so on. The difference between the performance of experts defined
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in this way and of novices, who lack the training and experience of the
experts, is so great that it is easy to observe and characterize expert-novice
differences even with this crude division; in fact, the performance of the two
groups seldom overlaps.

Chess has been a very valuable domain for research on expertise
because, among other reasons, there exists a standard quantitative scale
for measuring differences in chess skill. The ELO rating, which is as-
signed to all persons throughout the world who play in tournaments,
measures the player’s results from competitive play against other rated
players.’ A rating of 1,800 to 1,999 assigns a player to Class A, 2,000 to
2,199 to Expert, 2,200 to 2,499 to Master, and 2,500 and over to Grand-
master rank. The ratings are so adjusted that a player whose rating
exceeds another’s by 200 points should defeat the latter in about two
games out of three. In most research on expertise in chess, Masters and
Grandmasters are regarded as experts and players of Class A and below
as novices, but the research is not limited to simple expert-novice
distinctions, for it can observe differences all along the scale and confirm
the fact that there are not discontinuities, but a smooth gradient to the
very top levels.

Some researchers on expertise (e.g., Simonton, chap. 8, this volume)
would distinguish two levels of experts: those who represent state of the
art practice, and those who are the discipline’s creators, continually chang-
ing the discipline by contributing new knowledge, theories, and techniques.
We later have some comments on this distinction between experts and
creators, but work mostly with a simple distinction between experts and
novices, as most of the research has been reported in those terms.

Performance of Experts

Quality of Performance

The tasks put to experts in experiments generally involve making deci-
sions or solving problems. We combine both activities under the term
problem solving. The consistent (and unsurprising) finding of research is that
experts can solve problems in their domain that novices cannot solve, or, in
the case of problems solvable by novices, experts can solve them much more
rapidly and accurately. When think-aloud protocols are taken of problem
solving, experts’ protocols are generally briefer than novices’, probably
reflecting the fact that many of the experts’ subprocesses have been auto-
mated so that they no longer require conscious attention. Novices tend to
work backward from the problem goal, whereas on problems that are very
easy for them, experts work forward, simply noticing and reporting conse-

MThere are both international and national ELO ratings, which differ slightly, but we do not
need to be concerned with these differences.
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quences of the “givens” of the problem until a solution appears. On more
difficult problems, experts usually revert to working backward, or at least
to working in a goal-directed manner (Simon & Simon, 1978).

On problems of kinds that experts encounter frequently in professional
practice, they reach rapid, sometimes “instantaneous,” solutions, and are
often unable to report intermediate steps in the process that led to the
solution. In such cases, they commonly report that they solved the problem
by intuition. In medical diagnosis, physicians often announce a tentative
diagnosis immediately on initial presentation of some symptoms, but
usually call for additional information before reaching a final conclusion.
Similarly, in chess, experts are frequently aware of a possible move within
seconds of gaining sight of a board, but will spend time—sometimes as
much as a quarter of an hour—in verifying or revising the initial intuition.
Similar intuitive expert behavior can be seen in other domains.

The same basic representation of a problem is frequently shared by all
experts—as a product of the experts’ training and experience. For example,
when confronted with a problem in dynamics, expert physicists will usually
try at once to express the problem in terms of differential equations.
Operations research experts will classify a problem as a “linear program-
ming problem,” a “queuing problem,” an “integer programming problem,”
and so on. Research has shown that experts generally sort and characterize
problems according to the basic representations and methods relevant to
solving them, whereas novices sort them in terms of surface features that
often do not cue the representations that are effective for solving them (Chi,
Feltovich, & Glaser, 1981).

In so-called “insight problems,” the initial representation that most
people adopt when presented with the problem is inappropriate. (This is
what makes the problem an insight problem.) There is usually a long period
during which the solver attempts to use this initial representation, followed
by frustration and then attempts to find a better representation. If one is
found, its discovery may be accompanied by an “aha!” (literally), and the
“aha” soon followed, in turn, by a solution to the problem (Kaplan & Simon,
1990). Of course what is an insight problem to a novice may notbe an insight
problem to an expert, who may recognize at once from the problem state-
ment what representation will lead to a solution. In general, subjects are
unable to report the reasoning (if that is what it is) that leads them to
discover the correct problem representation. The “aha” is evidence that the
solution obtained suddenly was unanticipated before the change in repre-
sentation was made.

Speed of Performance.  Experts not only solve domain problems that
novices cannot solve, but they generally solve them much more rapidly.
Protocol data indicate that many subtasks that require novices to carry out
a sequence of steps and to engage in heuristic search are solved by experts
in a single step triggered by recognition of the appropriate cue. Thus, the
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expert has replaced the sequence of operations used by the novice by some
kind of macro-operation. In fact (although this may not hold for some kinds
of motor tasks), superior speed in performance can generally be accounted
for by “chunking” of this general kind, and does not require that the
primitive processes (reaction times, times to apply simple arithmetic opera-
tors, and so on) of the expert be speedier than those of the novice.

For example, from think-aloud protocols, information can be obtained
about the processes used by lightning calculators, and about the differences
between those processes and the ones used by people with ordinary abilities
in calculation. When allowance is made for the differences in strategy
(differences that are based in large part on numerical knowledge that the
lightning calculator possesses and novices do not), most of the difference in
overall speed can be accounted for without postulating that the lightning
calculator adds or subtracts single digits substantially more rapidly than
novices do, or has unusual memory capacity (Dansereau, 1969).

Performance on Extradomain Tasks. The superior performance of ex-
perts does not carry over, in general, to tasks lying outside the domain. Of
course if the extradomain tasks share common elements at an abstract level
with tasks in the domain of expertise, there may be more or less extensive
transfer of heuristics. (A physicist will probably have an easier time reading
a text in mathematical economics than will a person without training in
calculus.) But unless identifiable opportunities for transfer are present
(common elements), the expert is likely to perform only a little better, or no
better, than the novice.

A classical demonstration of this fact that has received much attention
compares the respective abilities of chess experts and novices to replace the
chess pieces on a board that they have seen for only a short interval (5
seconds, say). The boards used in these experiments typically have about
25 pieces on them, either (Condition 1) arranged as they were in a game
between strong players or (Condition 2) arranged at random. In the game
positions, the experts show an enormous advantage over novices: Masters
and Grandmasters are usually able to replace the pieces with 90% or more
accuracy (23-25 pieces, say), whereas Class A players will generally replace
only 6 or 7 pieces. In the random positions, novices (Class A players) will
do a little more poorly than with the game positions (3 or 4 pieces replaced
correctly), and experts will average only about 1 piece more than the
novices (Chase & Simon, 1973; Gobet & Simon, in press).

This experiment refutes the hypothesis that the superior performance of
the experts is due to a superiority of domain-independent perception
and/or memory. Instead, it appears that novices see individual pieces on
the board, whereas experts see familiar constellations (chunks) of pieces—a
half dozen of them, say. If short-term memory (STM) is limited by the
number of chunks (familiar patterns) that can be held, then the results of
this experiment can be explained without positing any difference in the
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capacities of the expert and novice STMs: Both can hold six or seven chunks
in memory, and when familiar chunks are rare (as on the random boards),
experts do nearly as badly as novices. This same effect of chunking on STM
capacity has been demonstrated for a variety of other tasks besides chess.

The Knowledge of Experts

We have already suggested that, to a major degree, the superior perform-
ance of experts can be explained in terms of their superior domain knowl-
edge. There have been a few direct estimates of the extent of that
knowledge, the estimates being all of the same order of magnitude. First,
we have some measurements of native language vocabularies of children
and adults. In round numbers, the measured vocabulary of a college-edu-
cated adult is usually in the range of 100,000 to 200,000 lexical items whose
meanings would be understood if they were seen in the context of text. This
estimate is consistent with the vocabulary size of good bilingual dictionar-
jes, typically in the neighborhood of 60,000 words, which need to be
supplemented by technical vocabularies in special domains. Estimates have
also been made, by several more or less indirect routes, of the number of
chunks (familiar patterns of pieces) held in memory by chess experts. These
estimates lie in the range from 50,000 to 100,000.”

Of course, the knowledge of the expert is surely not limited to a vocabu-
lary of familiar patterns. It also includes a more or less extensive store of
representations that can be used in solving problems, actions that can be
taken in the solution process, and a variety of other components. The
important overall point is that the expert’s ability to perform in his or her
domain of expertise rests solidly on a large accumulation in long-term
memory of knowledge that is (often) evoked when it is relevant for solving
the problem at hand. If we broaden the definition of chunk to encompass
knowledge of all of these kinds, then we can estimate that the expert holds
in memory hundreds of thousands, or even a few million, of such chunks.

Becoming an Expert

The empirical studies of how someone becomes expert in a domain pro-
claim loudly and consistently that experts are made, not born. This is not
to say that there are not innate differences among people in “talent” or
ability. Of course there are. No training regimen is likely to make someone
born with an IQ of 50 (using any standard measure of IQ) into a competent
attorney, aircraft mechanic, flute player, or research mathematician. How-
ever, innate talent or ability only becomes expertise when it is nourished by

Holding (1985) argued that the number is much smaller, but Gobet and Simon (1995), on
the basis of a re-examination of the evidence, found strong evidence for the earlier estimates.




6. THE EPAM MODEL 173

extensive training and practice. This fact has been confirmed at the highest
level of expertise by studies of more than a dozen expert domains, including
chess playing, musical performance, swimming, tennis, musical composi-
tion, experimental science, mathematical research, and others (Bloom, 1985;
Ericsson & Charness, 1994).

World-class experts may be defined as the top few hundred persons in
any domain: Olympic winners in sports, concert pianists who win interna-
tional prizes, strong chess Grandmasters, Nobel Prize winners in science,
members of national academies, and the like. The central research finding
is that no one becomes a world-class expert without 10 years or more of
intense attention to training and practice in the domain of expertise (Bloom,
1985; Hayes, 1988). Einstein, for example, was studying physics (and had
even written an unpublished paper on electromagnetism) 10 years before
the famous year (1905) in which he published, at age 26, his first paper on
special relativity.

Moreover, even at very high levels in a domain, there is a strong corre-
lation between acknowledged expertise and cumulated learning time
(Ericsson & Charness, 1994). It has gradually become clear that neither child
prodigies nor so-called “idiot savants” are exceptions to this rule: When
their histories are studied, it is found that they have put in their 10 years
before reaching world-class levels. Mozart, for example, was composing at
age 4 or 5, but his first works that would be regarded as world class were
composed when he was atleast 17 (and perhaps none written before he was
21 really qualify as world class}—an interval of 12 or more years. The same
is found to be the case for other prodigies.

Idiot Savants. As for idiot savants (who may form an exception to the
“tested-1Q-of-50 rule” proposed already), the “idiocy” stems from the fact
that almost all of their efforts have been directed toward their domain of
pre-eminence, hence they know little about anything else. Their expertness
is almost always acquired in domains (arithmetic is one example, music
another) in which they can increase their knowledge by constant, and
usually solitary, mental activity (e.g., memorizing large numbers of prime
numbers and various short-cut computations that use such knowledge, or
memorizing both specific pieces of music and characteristic “chunks” that
lie at the basis of musical pattern). They do this without necessarily being
instructed explicitly or having access to books. When information is avail-
able about the ways in which savants spend their time, there is always a
history of intense preoccupation with the domain of expertise. In the rare
cases where they are world class in that domain, their histories do not
violate the 10-year rule.

In contrast to idiot savants, most persons who become world-class
experts receive a great deal of instruction along the path, first from parents,
teachers, or coaches available in the immediate environment, then from
progressively more sophisticated teachers and coaches combined with
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immersion in a culture that provides many opportunities for competition
and collaboration with other experts, and observation of their perform-
ances.

Talent and Expertise. Sternberg (chap. 15, this volume) has argued
passionately and persuasively that innate talent is essential to acquiring
high levels of expertise. We must emphasize again that the empirically
based 10-year rule of thumb and the 50,000-chunk estimate for the acquisi-
tion of world-class expertise set necessary conditions for these attainments,
but we do not claim that they are sufficient conditions.

To establish sufficient conditions for expert performance, we have to
conduct experiments, either with human subjects or computer problem-
solving simulators or both, that start with rather complete information
about initial memory inputs and abilities and show that these were ade-
quate to produce some kind of expert behavior. We mention two examples
where this strategy has been employed to some extent, one involving
computer simulation, the other involving human subjects.

The computer program BACON (Langley, Simon, Bradshaw, & Zytkow,
1987), given exactly the same data as Kepler had available (periods of the
solar planets and their distances from the sun), and no other knowledge or
hypotheses about astronomy, concluded, within a short time and after
generating and testing only four different l}ypothaes, that the data were
described by the law: Period = (Distance)*”, which is precisely Kepler's
Third Law, a major landmark in the history of astronomy. We know exactly
what knowledge BACON had. In addition to the data (identical with
Kepler’s), ithad only some heuristics (rules of thumb) for generating simple
functions and modifying them successively on the basis of the kind of fit or
misfit it observed between function and data. Therefore, we can conclude
that any system possessing these data and these simple heuristics has
sufficient “talent” to make some discoveries of this kind and magnitude.
Of course BACON did not only find Kepler‘s Third Law but, under exactly
the same conditions and using exactly the same heuristics with the appro-
priate data set, rediscovered a whole host of important basic laws of physics
and chemistry (Ohm'’s Law, Black’s Law, conservation of mass, etc.).

To calibrate this performance against human capabilities, Kepler’s data
were given to 14 college students in the laboratory. The variables were
simply labeled x and y, no interpretation was provided in terms of periods
and distances, and no mention made that these were astronomical data.
Nevertheless, 4 of the 14 students arrived at the law stated earlier within an
hour. The 10 who failed to do so either (a) generated only a small set of
candidate functions (exclusively linear functions), or (b) generated func-
tions without using feedback from the previous attempts to guide
construction of the next function (Qin & Simon, 1990).

As we do not know in detail what was stored in the students’ memories
prior to the experiment, we cannot make as confident a statement as we can
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for BACON about the sufficient conditions for successful performance; but
the experiment could easily be extended to discover what percentage of
students having various backgrounds and histories of academic proficiency
could be trained in a shorter or longer period of time to behave in the
general manner of BACON and to achieve comparable success in law-dis-
covery problems. Until experiments like these are carried out, we cannot
make confident statements about the relative importance of talent and
training in attaining high-level performance, or in determining the speed
with which high levels can be reached.

Motivation and Cognition in Expert Performance

The histories of world-class experts show that high levels of expertise
require not only learning but also the motivation (innate or acquired) that
produces the necessary patience and persistence in training and practice.
Even when the tasks on which the expertise is demonstrated are wholly
cognitive, the attainment of this expertise can only be explained with proper
attention to motivation. As this topic lies largely outside our own domain
of expertise, we do not have much to say about it. In this case, silence does
not imply unimportance.

AMODEL OF EXPERTISE AND ITS ACQUISITION

Having described some of the main characteristics of expertise that have
been revealed by research, we wish to show (a) how the facts we have
recounted can be explained in terms of a small number of information-proc-
essing structures and mechanisms, and (b) that these structures and mecha-
nisms are not peculiar to the phenomenon of expertise but are the basic
mechanisms that have been used to explain cognition generally—whether
of experts or novices. Experts simply employ, at a very high level of skill in
their domains of expertise, the basic information processes that other
human beings employ at lower levels of skill, but the experts have access
to much richer knowledge bases than are available to nonexperts. What we
aim at, then, is a parsimonious account of expert behavior within the
framework of a general account of cognition; in the words that Newell used
to title his last book, at “unified theories of cognition” (Newell, 1990).

We need such a model for several reasons. The first is to demonstrate that
our explanations are not being constructed ad hoc for each distinct phe-
nomenon: that a modest number of basic mechanisms can account for them
all. The second is to show that parameters of the model that have been
estimated from one experimental paradigm (not necessarily related to
expertise at all) retain the same values in the other paradigms, thereby
providing the parsimony that is necessary if the theory is to be refutable or
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testable. Splintered accounts of individual phenomena do not have this
parsimony or this testability.

As the mechanisms that we need for our purposes have not yet been
wholly encapsulated in a single unified theory, we have to settle for a little
less: two interrelated information-processing models, one of them, EPAM,
dealing primarily with perception, memory, and the processes of recogni-
tion that depend on them; the other, embodied either in GPS or Soar, an
expert system that solves problems by searching heuristically through
problem spaces. These models also incorporate learning mechanisms that
acquire the expert knowledge and problem-solving processes, as well as the
processes for generating and altering problem representations. We focus
most of our attention on EPAM, for its role in expertise is perhaps less
familiar than the role of problem-solving mechanisms.

The EPAM Model

The EPAM model of elementary perception and memory was built initially
by Feigenbaum (1961) to account for the processes of knowledge acquisition
and recall, and has since been expanded by Feigenbaum, Gregg, Richman,
Simon, and others to model a wide variety of memory phenomena that have
been studied in the laboratory (Feigenbaum & Simon, 1984; Gobet, 1993;
Richman et al., 1995). In acquiring new knowledge, as EPAM becomes
familiar with simple stimuli, it groups these stimuli into larger units called
chunks, a phenomenon whose importance was first recognized by Miller
(1956). A chunk is any unit of information that has been familiarized and
has become meaningful (e.g., the words and phrases in one’s natural
language vocabulary, the objects that can be recognized when seen and
named, etc.). The familiarity of a chunk relates to the ability to recognize it;
meaningfulness to the information that is stored in association with it in
long-term memory (LTM).

Chunking is recursive, so that chunks at any level can be grouped again
into chunks at the next level above (visual features into letters, letters into
words, words into familiar phrases, etc.). By testing EPAM in a wide range
of experimental tasks, estimates have been obtained, and confirmed by
converging evidence, for the latencies of the basic processes required to
recognize a familiar item (about 0.5 ), learn the recognition tests for a new
chunk (about 8 s), add a new piece of information to a LTM chunk (about
1-2 s) and retrieve stimuli (about 200 ms-2 s).

Short-Term Memory. EPAM models both STM and LTM. The most
important STM for our purposes is the articulatory loop (Baddeley, 1986),
whose capacity has been shown to equal the number of chunks that can be
rehearsed in about 2 seconds, where the time required to rehearse each chunk
is about 300 ms for the first syllable and 80 ms for each additional syllable
(Zhang & Simon, 1985). What appears to be held in STMis a pointer to each




6. THE EPAM MODEL 177

chunk, so that the contents of the memory can be rehearsed by accessing
the articulatory image of each chunk via the pointer, thereby recovering its
syllables. Information stored in the articulatory loop at any given time can
be attended to, and this information is subject to learning—that is, gradual
transfer to LTM. The time required for transfer is about 8 seconds for each
new chunk, as EPAM’s discrimination net is elaborated to distinguish it
from chunks already familiar.

From the standpoint of expert memory, the principal significance of the
parameters of STM lies in the constraint that they place on the time required
to acquire new recognizable chunks. At 8 seconds per chunk, the 50,000
chunks we have estimated for the chessmaster’s memory store could be
acquired in a little more than 100 hours, smaller, by two orders of magni-
tude, than the 10 years required to reach world-class skill. How do we
account for the remaining time? First, the 8-second parameter for storing a
new chunk in LTM is derived from standard verbal learning experiments,
where ability to recall memorized items is tested only a few minutes after
they have been stored. It is well known that information stored under these
conditions, without redundancy, decays very rapidly, so that only a small
fraction is available after 24 hours has elapsed. The relearning and over-
learning required for long-term retention can easily account for one order
of magnitude more learning time, or a total of 1,000 hours.

Second, the 50,000 chunks estimated for the chess expert includes only
patterns of pieces that will be recognized when they occur in a game
position (including templates, which we discuss later, of typical positions
that appear frequently in opening play). The expert must retain many other
kinds of knowledge as well—in particular, knowledge of moves that may
be appropriate when a particular pattern appears in a game, strategies for
look-ahead analysis of moves, and so on. Again, it is not unreasonable to
allow another factor of 10 in leamning time to account for all of this addi-
tional information that must be stored in LTM. Finally, not all of the time
spent in study is available for learning new chunks; in fact, as the learner
becomes more and more expert, novel information that can be added to the
knowledge store is encountered less and less frequently. We conclude that
the parameters of learning speed that have been estimated from verbal
learning studies are consistent with the estimate of 20,000 learning hours
available during a 10-year period of work. (We conservatively estimate a
40-hour week!)

Visual Short-Term Memory. Most of the measurements on rates of
learning have dealt with auditory material and the articulatory loop. The
parameters of visual STM (the “mind’s eye”) are less well known, but there
is no reason to suppose that the time required to transfer a familiar chunk
of information from the mind’s eye to LTM is very different from the time
required to transfer an auditory chunk. Hence, our earlier comments about
the time required to acquire the recognition capabilities that the expert
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can be applied to both auditory and visual chunks. For purposes
of studying expertise and its acquisition, little specification is needed of the
details of STM, auditory or visual, beyond the phenomenon of chunking
and the time required to transfer new chunks to LTM.

Long-Term Memory. EPAM'’s LTM can be thought of as an indexed
encyclopedia. On presentation of a visual or auditory stimulus, perceptual
processes (not represented in the present EPAM or in most other current
models of perception) extract a list of features from the stimulus and these
feahuesareﬁ\ensorﬁeddown&\mughadiscriminaﬁonnettoaterminalor
~Jeaf” node. The different leaf nodes of the EPAM net represent the different
stimuli that EPAM is able, at any given time, to discriminate. At each leaf
node is stored an “image” of the stimulus, containing partial information
about it (including the information that was used to sort it) and containing,
also, associational links to other information about it that is held in LTM
(semantic LTM). The EPAM net, then, is the index to the semantic LTM,
providing access, through the associational links, to the information held
in the latter. The net is not a simple tree but a network, for many paths may
lead to the same leaf node, providing the redundancy that is required to
recognize objects when they are observed from different angles and under
varying circumstances.

Leaming: Growth of the EPAM Net. Whena stimulus is sorted to a leaf
node of EPAM, its features may be compared with the features of the image
stored there. If there are discrepancies between the two sets of features,
EPAM can construct a new test node that tests for the nonidentical feature,
and a new leaf node to accommodate the new stimulus, retaining the old
leaf for the original stimulus (Simon, 1976). By this means, the EPAM net
and the corresponding set of leaf nodes grow continually as they learn new
patterns, performing the same function that is performed by the “hidden
layers” of connectionist learning systems. Each new pattern that is discrimi-
nated gains its own leaf node, identifying a new chunk.

Large discrimination nets have been acquired in this manner. EPAM, in
simulating a human subject who learned to repeat back sequences of 100
digits that were read to him at the rate of one digit per second, gradually
~grew” a discrimination net with more than 3,000 leaf nodes (Richman et
al,, 1995). CHREST, an EPAM-like system for simulating the acquisition of
chess expertise has acquired nets as large as 70,000 leaf nodes on being
exposed to a large number of chess positions with the goal of retaining the
patterns contained in them (Gobet, 1993; Gobet & Simon, 1995).

Acquiring Templates and Retrieval Structures. It has been found that
human chess experts store in memory templates of many thousands of
opening positions—the positions at which the game typically arrives after
sequences of 10 or 20 “standard” opening moves. The templates of these
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positions generally contain information about the locations of 10 or more
pieces, and the presumptive locations of perhaps another half dozen. When
an expert is given a brief view of a game position, he or she can then usually
recognize it as corresponding to one of these templates, and thereby retain
information about the locations of nearly half the pieces on the board.
Moreover, information about additional pieces can be added rapidly by
noticing whether they do or do not conform to their presumptive locations.
We call these presumptive locations the template’s slots, or variable places.
It appears from experiments in which experts replace pieces on a briefly
exposed board that information about the location of a piece can be stored
in a slot in a fraction of a second.

An important technique of mnemonists, known and taught from Greek
and Roman times, is to learn deliberately a retrieval structure that contains
a great many slots in a determinate relation with each other. Once the
retrieval structure is in place, each of its slots, like the slots of the chess
expert’s templates, can be filled with a chunk of information in a second or
less. Classically, the retrieval structure took the form of a “memory palace.”
The mnemonist memorized the room plan of a palace, with various pieces
of furniture permanently stationed in each room. Then, to store a particular
list of chunks rapidly, the mnemonist simply assigned each item, in order,
to one of these locations. Subsequently, they were recalled by accessing one
room after another and noticing (in the mind’s eye) what items had been
placed there. The retrieval structure resided permanently in LTM, and could
be used repeatedly to store new lists in its slots.

The expert, mentioned earlier, who recalled long lists of digits used a
retrieval structure of a slightly more abstract kind (Chase & Ericsson, 1981;
Richman et al., 1995). He simply imagined a hierarchy of slots, grouped by
threes and fours, and assigned the digits to the successive leaf nodes at the
bottom of this hierarchy. He also associated groups of digits (again groups
of three or four) with long-distance running times he had previously stored
in semantic memory as a result of his extensive experience and knowledge
of running. As each three or four digits were read to him for the recall task,
he assigned them to successive retrieval structure slots, and at the same time
associated them with a familiar running time. Although the process was
subject to some forgetting (it is estimated that he almost immediately forgot
about 25% of the items stored) the redundancy of storage of information in
more than one place allowed him to recover most of the information, and
thereby to recall long lists without error.

The critical parameters in this kind of performance are (a) the ability, over
some period of time, to build templates or retrieval structures in LTM, ata
rate of perhaps 8 seconds for each new chunk, and (b) the ability to fill the
slots in these structures with information (to be retained for a matter of
hours) at a rate of less than 1 second per chunk. EPAM and CHREST, which
embody such parameters, simulate closely the performance of chess and
digit-memory experts in recall tasks, thus reconciling these “exceptional”
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performances with what has been learned about human memories in the
standard laboratory tasks on verbal learning. The effectiveness of the
chunking/retrieval structure mechanisms embodied in EPAM to explain
expert memory has thus been demonstrated in two quite different environ-
ments, in one of which the acquisition of retrieval structures was a
deliberate mnemonic strategy, in the other, a by-product of practice and the
study of chess.

Recognition and Expertise. The indexed knowledge base that is
EPAM provides the mechanisms that we require to explain the commonly
observed ability, discussed in a previous section of this chapter, of experts
-who solve many problems and deal with many situations “intuitively.” The
basis of EPAM's intuitions is simply its ability to recognize familiar cues (by
sorting stimulus features through its discrimination net), thereby gaining
access to the relevant knowledge associated with them. The physician
recognizes symptoms and “intuitively” concludes (subject, perhaps to ad-
ditional tests) that the patient is suffering from a particular disease; the
attorney recognizes features of a contract and “intuitively” concludes that
it subjects her client to certain risks. It is not a question of whether these
intuitions are always reliable; they are often reliable enough to permit the
expert to proceed with the task vastly more rapidly and reliably than the
novice, who must employ much more tedious step-by-step search proc-
esses. The information recovered by such recognitions of cues can be very
extensive; the physician may access not only the name of the disease but a
large store of information about prognosis, methods of treatment, and so
on. We no longer need to regard intuition as an unexplained phenomenon.
It is synonymous with the familiar process of recognition, and we can
simulate its workings with EPAM and other models of memory.

Insight and Leaming Representations. Closely related to intuition,
but perhaps requiring a slightly more elaborate mechanism for explanation,
is the phenomenon of insight. Like intuition, insight involves sudden solu-
tion of a problem, usually accompanied by inability of the solver to explain
how the solution was found, and often punctuated by a figurative or literal
“aha!” What distinguishes occasions of insight from the much more com-
mon occurrences of intuition is that insight is often preceded by a shorter
or longer period during which no problem solution is found, and often no
plausible steps for moving toward a solution. When the insight finally
occurs, it usually can be seen that the representation of the problem had to
be changed in order to find the solution, but that the solution was found
easily (perhaps even became “obvious”) as soon as the new representation
was available (Kaplan & Simon, 1990).

The key to the insight is the process of discovering a new problem
representation. This new representation can already be present in the
memory of the problem solver, or it can be unfamiliar. In the former case,
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the reason for the delayed solution is that no clue is recognized in the
situation that associates with the effective representation, so that the latter
is simply not evoked, and hence is unavailable. In these situations, it is
usually easy to produce the insight by providing the problem solver with
a clue (often a very simple one) that produces the recognition, and thereby
leads quickly to the change in representation. With experience, EPAM adds
a new path from cues characterizing a class of situations to knowledge of
one or more representations effective for dealing with it.

Where a representation is required that is not already familiar, insight
requires problem-solving activity as well as recognition. The new repre-
sentation must be discovered, then added to LTM along with the cues for
its recognition. Lack of an effective representation was the principal reason
for the failure of Newton’s contemporaries, who were unfamiliar with the
calculus, to demonstrate the law of universal gravitation. Although several
of them (e.g., Hooke, Wren) conjectured a gravitational force that varied
inversely with the square of the distance, none was able to demonstrate that
such a force could account for the planetary motions. Once the calculus
representation was available, the derivation was quite straightforward—to-
day, students in first-year physics carry it out routinely. We have a little more
to say about insight and invention in the next section.

The Problem-Solving Model

EPAM's indexed memory, the body of knowledge stored in it, and its
processes for acquiring new knowledge by leamning can account for a
considerable part of the expert’s superior abilities in memory retrieval and
problem solving in the domain of expertise (and the absence of that
superiority outside the domain). However, to complete the story, we must
look at problem solving that requires more than recognition proc-
esses—situations in which more or less extensive heuristic search is also
required. Here again, existing models of problem-solving processes like
GPS and Soar provide most of the answers we need; but to see this we have
to discuss the search process in a little more detail (Newell, 1990; Newell
& Simon, 1972).

Solving a simple problem, say the Tower of Hanoi, is usually described
as a search through the space of possible (“legal”) arrangements of the disks
on the pegs, from the starting arrangement to the arrangement specified as
the goal. Successive states in the problem space are reached by moves, each
of which, in this puzzle, amounts to changing the location of a single disk.
The search is almost never random, but is guided by various heuristic rules
that seek to guide the selection of the proper moves. The heuristic rules may
be more or less complete, more or less correct.

When we come to more complex tasks, however, even tasks like finding
the concept an experimenter has in mind to distinguish one set of objects
from another, the search becomes more complex, usually involving inter-
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action between two or more distinct problem spaces: the space of “in-
stances” and the space of “hypotheses” (Simon & Lea, 1974). Suppose,
for example, that a subject is presented with a succession of objects and
asked to designate each one as belonging or not belonging to the concept
by which the experimenter classifies them. The succession of objects
constitutes the instance space, the hypotheses that the subject generates
as possible classifiers constitute the hypothesis space. When the subject
is told that he or she has made an incorrect judgment, the current
hypothesis is usually rejected and a move made to another point in the
hypothesis space. Again, this move may be guided by heuristics that are
based on information collected from the previous choices and reinforce-
ments. It has been shown that the behavior of subjects in concept
attainment experiments can be explained in terms of search in the dual
instance and hypothesis spaces.

Finding a scientific law that describes data obtained in a similarly
cumulative fashion has been modeled in the same way by computer
programs like BACON and others, using a dual search in the space of
possible laws and the space of possible data observations. But why limit
the process to two spaces? A scientist may search in a space of instru-
ments, a space of experiments, a space of possible descriptive laws, a
space of explanatory mechanisms, a space of problem representations, a
space of research problems, and perhaps others (Langley et al., 1987).

Krebs, for example, in his search for the mechanism of urea synthesis
in living organisms, selected that problem as one already recognized as
important but unsolved, selected instruments and experimental proce-
dures that he had acquired as a postdoctoral student in the laboratory of
Otto Warburg, searched a space of substances as possible sources for the
nitrogen in the urea, and when he discovered that ornithine and ammo- -
nia were implicated in the process, searched a space of chemical
reactions to find a reaction path from inputs of these substances to the
output of urea (Holmes, 1980).

Knowledge of this multitude of spaces as well as some knowledge of
their structure is required for an expert approach to the research problem.
As with every problem, progress will depend on processes of recognition
(of possible representations, instruments, experiments, theoretical hy-
potheses, etc.), combined with search processes in the several spaces
whenever recognition does not give an answer to the current question and
a new one must be synthesized. The programs that have been built in
recent years to accomplish these recognitions and searches are, again,
recognizable kinfolk of programs like EPAM and the General Problem
Solver (or Soar}—EPAM to make use of the knowledge base to achieve
recognition of relevant information, GPS or Soar to conduct the searches
in the many problem spaces. As an integral part of these processes, new
learning goes on: New chunks are constructed, stored in LTM, and in-
dexed by the cues that permit them to be recognized.
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Acquisition of Problem-Solving Skill

Itis clear from this account that the expert needs to acquire much more than
knowledge in declarative form. Expert skill is heavily dependent on effi-
cient processes, including strategies, planning processes, and repre-
sentation-generating processes. If the processes in the expert system take
the form of productions (i.e., If <cue>, then <action> ), as they do in such
problem-solving systems as GPS (Newell & Simon, 1972), Soar (Newell,
1990), and Act’ (Anderson, 1983), then the learning mechanisms must create
new productions that can be added to LTM and evoked, via the discrimi-
nation net, when the appropriate cues are present. Soar, for example,
accomplishes this by storing information about the paths it has followed
during problem solving so that it can recover these paths without search
when the same or a similar problem later presents itself.

It is not yet clear whether learning schemes of this kind are sufficient to
account fully for expert skill acquisition or whether additional mechanisms
are required, but the power of learning by elaboration of a discrimination
net combined with storage of knowledge schemas and new productions has
been demonstrated in numerous contexts.

Expertise and Creativity

Simonton (chap. 8, this volume) hypothesizes that there may be a special
group of experts in each domain who have not only exceptional knowledge
and skill but also unusual capacities for inventing and adding new repre-
sentations and other knowledge to the domain. These especially creative
individuals may or may not be the very best performers. In chess, for
example, Reti and Niemzovich were great and influential innovators who,
although they were strong Grandmasters, never reached the very top of the
ladder in chess competition. On the other hand, Morphy, Steinitz, Alekhine,
and Botvinnik, each a world champion, also introduced important innova-
tive ideas, whereas few important new ideas appear to have been contrib-
uted by Lasker, Capablanca, or Euwe, all world champions.

In this domain, as in others, we observe that certain experts do play a
more innovative role than others without being the most highly regarded
performers. In fact (one thinks of a Kandinsky in painting, a Schoenberg in
musical composition) an expert may take innovating as his or her special
role, and in domains like science, innovation (contributing new knowledge)
actually defines the expert’s central professional task. Moreover, we would,
in fact, expect more than an average number of innovators among the top
ranks of experts for, once the existing state of the art has been mastered,
employing new ideas and practices is the principal remaining route to
pre-eminence. The chess master has no choicebut to display his innovations
in his games (but they may be misunderstood by this contemporaries),
whereas in other domains innovators may gain more permanent advantage
through patenting or secrecy.
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Do we require special mechanisms to account for these innovators? It
appears that we do not, for as we have seen in the previous section of this
chapter, innovating (e.g., finding new representations and new strategies)
is itself a problem-solving task to which the tools of recognition and
heuristic search in the spaces of possible representations, possible strate-
gies, and so on, can be applied. The innovator, from this standpoint, is
simply a problem solver (and “recognizer”) who applies his or her efforts
to changing the problem spaces in which recognition and search are carried
on. The “great” innovators are those who solve the problem of bringing
about the largest changes: Newton's calculus, Planck’s quantum, Harvey’s
blood circulation, and so on.

If the tasks of innovation are problem-solving tasks, then we should be able
to model them using the same mechanisms that have been used to model
problem solving generally, and we have seen that this has in fact been done in
such discovery systems as AM, BACON, EURISKO, LIVE, MECHEM, and the
many others that can now be found in the psychological and artificial intelli-
genwe literatures (see, e.g., Langley et al.,, 1987). Nor are the examples limited
to science. Hiller and Isaacson (1959) produced a very early program that
composed original (and sometimes musically interesting) music, and the
painter, Harold Cohen, has produced the Aaron program, which makes origi-
nal drawings (both nonrepresentational and representational) that are
aesthetically sophisticated and pleasing (McCorduck, 1991).

Of course, we can consider these programs simply as models of perform-
ance: They solve problems. But we must also take into account the extent
to which discovery models incorporate learning processes and modify
themselves in ways I have described earlier. Perhaps the simplest form of
self-modification is EPAM’s elaboration of its discrimination net, so that a
program can progressively recognize a wider and wider range of stimuli.
A related procedure, incorporated, for example, in theorem-proving sys-
tems, is the ability to store problem solutions and to use them in solving
subsequent problems. Beyond even this are systems that can modify their
own representations, processes, and strategies. In this category, I have
mentioned Soar, which stores and uses strategies that have been successful
in solving previous problems (Newell, 1990); and I would also call attention
to the UNDERSTAND system, capable of constructing problem repre-
sentations from verbal problem instructions (Hayes & Simon, 1974).

In the light of the experience we have already had with systems of these
kinds—incorporating the basic capabilities of recognizing and of solving
problems by search through multiple problem spaces and of learning—it is
not unreasonable to hypothesize that creativity is “simply” unusually
competent or admirable problem solving that accomplishes its tasks by the
use of these very mechanisms. We sometimes produce work that is creative
if we explore the space of problem representations, of instruments, or
strategies, and so on, not limiting ourselves to the problem spaces that the
current state of the art presents to us.
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CONCLUSION

Research in information processing psychology began in the middle 1950s,
with the construction of theories, in the form of computer simulations, of
human performance on relatively simple and well-structured tasks, most
of them tasks that were already familiar from the psychological laboratory.
Two of these early theories, both in operation before 1960, were EPAM, a
model of elementary perceptual and memory processes that was tested
against the data from verbal learning experiments, and GPS, a model of
problem-solving processes (emphasizing means-ends analysis) that was
tested against the data from various puzzlelike tasks. As the mechanisms
that were needed to explain these phenomena gradually became clearer, it
began to appear that EPAM and GPS could go a long way toward account-
ing for the behavior of experts and explaining why experts are so much
more competent than novices on tasks belonging to the expert domain. In
particular, it became clear that expertise depends heavily on the possession
of, and access to, large bodies of domain knowledge. Having in hand a
number of systems capable of expert performance, it proved possible to
devise learning schemes that showed how the expertness could be ac-
quired.

The early models were improved and extended, and new models (e.g.,
ACT’, Soar, BACON) emerged in an effort to give a better account of the
phenomena, but these and other systems that describe and explain how
experts behave expertly are recognizable descendants of EPAM and GPS.
The knowledge-accumulating and knowledge-accessing mechanisms of
EPAM:-like systems explain the expert’s use of “intuition” in the form of
recognition processes. The search mechanisms, extended to multiple search
spaces and making extensive use of means-ends analysis and other heuris-
tics, explain the expert’s capabilities for solving scientific problems,
including the subsidiary problems of finding appropriate representations,
instruments, experiments, data, and hypotheses.

Although we do wish to convey a picture of continuity and cumulation
in this chronicle of research, for we think these are fully documented by the
vast and continually growing body of phenomena that have been success-
fully described and explained, we do not wish to convey a picture of
completeness or even near completeness (no one would be fooled if we did).
Lots of things have been demonstrated “in principle” that still need to be
demonstrated in detail. A great many tasks (e.g., tasks in realms like language
behavior and language learning, representation change, uses of visual im-
agery—an endless list) have only been touched. There are new challenges
posed by the discovery of alternative mechanisms—connectionist systems
and neural networks currently the most prominent among them.

In short, we are in a fast-flowing stream of normal science, which is
rapidly gaining a broader and deeper understanding of human thinking in
general and the thinking of experts in particular; and we may even expect
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this stream to bring us closer to a solid linkage with neuropsychology,
which up to the present has been a rather separate, and even distant world.
.Asqmdxmcpnxnﬂnsnnmtbehmphnmnwdbyrwunnm]MnKMnagga-
ting a better understanding of that linkage is one of the important tasks
before us—although, we hasten to add, not the only one.

The symbolic level itself continues to present us with innumerable
research opportunities. It will be most interesting, as we watch these
developments in the future to see how far the basic processes of recognition
of familiar chunks and heuristic search through multiple problem spaces,
supported by the learning processes that create the underlying stored
knowledge and skill, will continue to stand at the core of our understanding

of the competencies of experts.
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