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Nonword repetition tasks (NWRTs) are employed widely in various studies on
language development and are often relied upon as diagnostic tools. However,
the mechanisms that underlie children’s performance in NWRTs are very little
understood. In this paper we present NWRT data from typically developing 5-
to 6-year-olds (5:4�6:8) and examine the pattern of their phonological errors
within the syllabic domain. We show that the children display a strong tendency
for errors at the syllable onset, with fewer errors in coda position. We then show
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well as general phonological development.
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INTRODUCTION

The error patterns that children exhibit in their speech production are of the

utmost importance to our understanding of language development. The

study of error patterns allows researchers to develop a clearer picture of what

constitutes typical language development, a condition which is not only an

empirical necessity for the development of sound acquisitional theories but

also the sine qua non for achieving a more refined definition as well as a

deeper understanding of atypical development.

A central part of language development is the acquisition of the

phonotactic rules of one’s native language, whose importance is at least

twofold. Firstly, one may not master a language without learning what

phonological sequences are possible in that language as well as what

positional restrictions may be placed on those sequences. Secondly, and

perhaps more importantly, the ability to generalise from individual phonetic

strings to larger, more general rules is arguably the single most important

skill underlying successful language development. Hence, the understanding

of the patterns involved in phonological errors is essential to our under-

standing of language development as a whole.

Nonword repetition tasks (NWRTs) offer the possibility of collecting large

amounts of phonological errors by using strings that conform to the

phonotactics of the language at issue whilst ensuring that the children have

no previous knowledge of the specific strings.

NWRTs have been argued to be a powerful diagnostic for Specific

Language Impairment (SLI) (Bishop, North, & Donlan 1996; Conti-

Ramsden & Hesketh 2003; Dollaghan & Campbell, 1998; inter alia).

However, the phonological mechanisms that underlie the performance of

both children with SLI and typically developing children in NWRTs are

poorly understood. The need for a deeper understanding of these mechan-

isms is particularly pressing when one considers that phonology has been

argued to be at the core of morpho-syntactic and lexical impairments (e.g.,

Chiat, 2001; Joanisse & Seidenberg, 1998).

One question that has received little attention is what part*if any*
syllabic positions1 might play in children’s performance in NWRTs. In this

paper we analyse the patterns of phonological errors in typically developing

children, aged 5:4 to 6:8 years, and compare them to the patterns emerging

from a newly updated version of the EPAM-VOC computational model

(EPAM-VOC II), based on the EPAM architecture (Feigenbaum & Simon,

1984; Gobet & Simon, 2000). The aim is to shed new light on the

mechanisms that underlie the children’s performance, particularly with

1 Throughout the paper, the term ‘‘syllabic position’’ refers to the position of phonemes

within syllables.
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respect to three widely recognised syllabic positions: onset, nucleus, and coda

(Giegerich, 1992; Jones, 1997; Harris, 1994; Laver, 1994; inter alia).

The paper is organised as follows. First, we discuss relevant literature

concerning NWRTs and the analysis of errors in relation to syllabic

structures. Second, we describe the EPAM-VOC model, explaining our latest

additions. Third, we present newly collected data on two separate NWR

experiments. Fourth, we show that the model can account for the children’s

performance at the general level*by successfully simulating performance

effects across nonword types*as well as at a more specific level, by matching

the specific type of errors that children make within nonword types, and in

particular at the level of the syllable. A general discussion of the findings of

our experiment and our simulations will follow.

Nonword repetition tasks and the study of phonological
development

Whilst it is fairly uncontroversial that children’s phonological knowledge

plays an important part in their performance on NWRTs (e.g., Gathercole,

Willis, Emslie, & Baddeley, 1991; Hulme, Maughan, & Brown, 1991), the

potentially important role of positional information in NWRT performance

has received very little attention. Although NWRTs have become a widely

used tool in psycholinguistics, much of the research has focused on factors

such as word length or consonantal combinations (e.g., Botting & Conti-

Ramsden, 2001; Gathercole & Baddeley, 1989; Gathercole, Willis, Baddeley,

& Emslie, 1994), without distinguishing between different syllabic positions

(see for example Gimson, 1980; Roach 2000; among many others). Although

often recognising syllables as sub-lexical entities, the research has yet to

examine the relationship between syllabic and phonemic information, or the

role of phonemes as syllabic components. Many researchers have relied on

the syllable solely as a means of measuring nonword length without

exploring its internal structure, thus overlooking the potential importance

of analysing repetition errors as a function of their syllabic position.

However, in domains outside of NWRTs, syllabic structures have been

examined in depth for the past 30 years. Indeed, the recent psycholinguistic

literature on children’s phonological performance could be divided into two

strands. On the one hand, there is research that investigates children’s

performance on NWRTs but ignores the potential involvement of syllabic

structure in explaining such performance. On the other hand, there is

research that investigates children’s errors from a syllabic perspective but

does not employ NWRTs, thus providing no direct information on the extent

to which syllabic positions may influence children’s performance on these

tasks. We will consider these two research strands in turn.

COMPUTATIONAL MODELLING OF PHONOLOGICAL ACQUISITION 3
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Error analysis in NWRTs

Children’s performance on NWRTs has received a lot of attention in the

psycholinguistic literature, and NWRTs have been used to investigate

linguistic development in a variety of languages (for example Gathercole &

Baddeley, 1989 for English; Radeborg, Barthelom, Sjöberg, & Sahlén, 2006,

for Swedish; Ho & Lai, 1999, for Cantonese). Some of these studies have not

been concerned with phonological development, however, and concentrated

mainly on lexical issues. For example, Munson, Edwards and Beckman

(2005) investigated the role that lexicality plays in aiding children’s recall of

nonwords in NWRTs and argued that error patterns could be at least partly

explained in terms of familiarity (see also Dollaghan, Biber, & Campbell,

1995; Gathercole, 1995).

However, those researchers that have worked on the phonological issues

associated with NWRT performance have often provided error analyses that

involved separating nonwords into phonemes and syllables without con-

sidering the relationship that holds between the elements within these two

phonological entities. This has been, for example, the approach taken by

researchers investigating the role of memory in NWRTs and its interaction

with long-term phonological knowledge (e.g., Botting & Conti-Ramsden,

2001; Gathercole & Baddeley, 1989; Gathercole et al., 1994). In this work,

performance on NWRTs has been analysed chiefly in terms of nonword

length, together with considerations regarding phonetic membership (i.e.,

consonantal vs. vocalic) of the component phonemes.

A similar method of analysis has been employed by researchers

investigating the role of sub-phonemic features. For example, Edwards and

Lahey (1996) compared error rates for stressed and unstressed syllables, and

considered whether specific manners of articulation might have a particularly

negative effect on children’s performance (see also Snowling, 1981).

Although the inclusion of prosodic and sub-phonemic information is

doubtlessly a step forward, this work still treats phonemes as stand-alone

elements rather than as components of larger phonological units.

A more complex experimental paradigm has been developed by Bowey

(1996, 2001) and Metsala and colleagues (Metsala, 1999; Metsala & Walley,

1998; Walley, Metsala, & Garlock, 2003), whose work on NWRTs also

included gathering information on children’s phonological awareness, as

measured by a task of phonemic discrimination. For example, in Bowey

(2001) children were presented with a number of spoken words and were then

asked to pick out those that ended in a specific sound. For the sound [f], for

instance, children were asked ‘‘Which of these ends with a [experimenter

makes [f] sound], mop or leaf?’’ (2001, p. 450). Researchers have claimed that

this paradigm provides evidence in favour of the view that performance in

NWRTs is affected by the ability to perform a thorough segmentation of the

4 TAMBURELLI ET AL.
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input during phonological processing.2 Although we do not necessarily

disagree with this view, we believe that it is unwise to draw conclusions

regarding the role of phonological segmentation without first providing an

analysis of children’s errors that takes into account all the various syllabic

constituents, as these have long been considered crucial components in the

segmentation of phonological units (see for example Blevins, 1995; Gold-

smith, 1992; Onnis, Monaghan, Richmond, & Chater, 2005; among many

others). Unfortunately, however, research on NWRTs has generally shied

away from considering these components.

Analyses of syllabic constituents

Naturally, there have been exceptions to this trend. For example, Kehoe and

Stoel-Gammon (2001) have investigated heavy syllables in early development,

a task that involved examining the relationship between syllable nuclei and

syllable codas. They reported that the two phonological features that make up

heavy syllables (i.e., long vowels and VC sequences) develop hand in hand,

with neither preceding the other. They also provided further evidence for a

developmental asymmetry concerning the late emergence of voiced obstruents

as compared to voiceless sonorants in coda position (see also Stoel-Gammon,

1985; Bernhardt & Stemberger, 1998). However, as this study was not

concerned with pre-vocalic elements, it did not provide information about

syllable onsets, thus falling short of providing an inclusive account of the role

of syllabic membership in children’s development.

A more comprehensive study was that of Kirk and Demuth (2005) who

examined the interaction between prosody and morphology (also Demuth

2001), including the potential role of syllabic structure in explaining

asymmetries in the acquisition of word-initial versus word-final clusters.

Specifically, they investigated children’s accuracy in repeating consonant

clusters through a picture identification task and reported that their

participants were more accurate in repeating clusters word-finally than

word-initially.3 They suggested that these results must be due to articulatory

constraints, as they cannot be explained either in structural terms or in terms

of frequency. In particular, their decision to treat consonant clusters as

structured combinations instead of simple linear sequences allowed them to

assess the empirical value of different theoretical frameworks relating to

2 Metsala and Walley (1998) and Walley, Metsala & Garlock (2003) have incorporated this as

part of their Lexical Restructuring Model.
3 Kirk and Demuth’s study included comparison of two groups of clusters. Word initially: /s/

� stop and /s/ � nasal; word-finally: stop � /s/ and nasal � /z/. Only these consonants were

considered since, as far as English is concerned, they are the only consonants that can combine

to form both word-initial and word-final sequences.

COMPUTATIONAL MODELLING OF PHONOLOGICAL ACQUISITION 5
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various levels of phonological performance, both at the processing and at the
articulatory level.

In this paper, we intend to build on this approach, and therefore we will be

viewing phonemes not just as phonological units, but also as syllabic

components whose properties are at least partly dependent on their position

within larger phonological units. As Kirk and Demuth (2005) have

demonstrated, this approach can provide a more far-reaching analysis of

children’s errors, allowing for the detection of important patterns that may

otherwise go unnoticed. Moreover, we will make use of these analytical tools
to investigate performance in NWRTs, an experimental paradigm that has

been argued to tap more directly into the phonological as well as the lexical

components of children’s linguistic development.

Syllabic analysis and NWRTs

A notable exception to the research strands outlined above is the work of

Marshall and colleagues (Marshall, Ebbels, Harris, & van der Lely, 2002;

Marshall & van der Lely, 2009), who have investigated the potential role that

syllabic information, and its interaction with stress patterns, might play in

the development of spoken and written impairments (SLI & dyslexia). For

example, Marshall and van der Lely (2009) have used NWRTs to investigate

children’s performance on word-initial versus word-medial clusters, effec-

tively building on the work of Kirk and Demuth (2005). They reported that
the clinical groups showed an asymmetry in cluster production, with word-

medial clusters attracting more errors than word-initial ones. Moreover, their

findings also suggest that positional information is closely linked with

language impairments, as no asymmetry was found for the typically

developing children, a fact that highlights once again the importance of

positional analyses.

Whilst this study provided important insight into the interaction between

position and phonological complexity, it was restricted to one syllabic
component, namely the onset. Hence, we will expand our error analysis to

include the two other syllabic constituents, namely nucleus and coda. Our

aims are threefold: firstly, to study whether the syllabic position in which a

phoneme occurs has an effect on children’s errors; secondly, to investigate

whether phonotactic probabilities of phonemic sequences interact with

syllabic positions in creating error patterns; and finally, to go beyond

empirical generalisations by providing a computational simulation of

children’s performance. As a computational model is first and foremost a
detailed set of theoretical assumptions, we aim to provide well-specified

theoretical explanations of the phenomena observed through NWRTs. These

will include well-established phenomena, such as word-length effects (e.g.,

Gathercole & Baddeley, 1989; Stokes, Wong, Fletcher, & Leonard, 2006), as

6 TAMBURELLI ET AL.
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well as newly discovered phenomena that relate to the positional role of

phonemes within the syllabic template.
We believe that the development of a computational model of children’s

performance is essential for furthering our understanding of the mechanisms

involved in the processing of nonwords. In particular, a computational model

can help us understand which specific patterns of errors can be generalised

from the input data, and which may result from the specific heuristics that

children might apply when faced with NWRTs. The immediate advantage of

a computational model is that it allows direct and detailed exploration of the

consequences that follow from our theoretical assumptions (see also Fum,

Del Missier, & Stocco, 2007). Thus, given that even small changes in our

fundamental assumptions can have important*and often unanticipated*
knock-on effects, a computational model can offer invaluable help in

investigating a system as complex as language.

A MODEL OF CHILDREN’S VOCABULARY LEARNING:
EPAM-VOC

Introduction

EPAM-VOC (Jones, Gobet, & Pine, 2007, 2008) is a model of vocabulary

acquisition based on the EPAM modelling architecture (Feigenbaum &

Simon, 1984; Gobet & Simon, 2000). It takes in phonemic information from

naturalistic speech input and organises it into a hierarchy of phoneme

sequences (not unlike the learning mechanism suggested by Ellis, 1996) which

it then stores as long-term phonological knowledge. The hierarchy is

represented via a tree structure with a null root-node under which are a

number of progressively longer sequences connected by ‘‘links’’.

Previous research (Jones, Gobet, & Pine, 2007) has shown that the

EPAM-VOC model can approximate performance on NWRTs from

different age groups (2�3 and 4�5 year olds) and across nonword-types.

Although this work represented an important step in the modelling of

NWR performance, it did not explore error patterns within nonword-types,

and thus did not address children’s treatment of syllabic structures. In this

paper, we present a more fine-grained analysis of children’s as well as model

data, particularly in relation to error-types as dictated by standard syllabic

structure. In describing version II of the EPAM-VOC model, any departure

from the previous version of EPAM-VOC will be highlighted, together with

the reason for the alteration. Also, whilst the current version of the model

presents a number of changes and improvements, it nevertheless remains a

version of EPAM-VOC since it accounts for all the data that were

accounted for by previous versions of the same model.

COMPUTATIONAL MODELLING OF PHONOLOGICAL ACQUISITION 7
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Representing long-term knowledge

EPAM-VOC encodes phonological knowledge as a hierarchy of phonemic

sequences, or ‘‘chunks’’. Top-level chunks contain only individual phonemes,

while lower-level chunks involve phonemic sequences, provided that the

model has been exposed to a reasonable amount of input. Chunks get

progressively larger as one proceeds further down the hierarchy.

Knowledge of the phonemic inventory is programmed into the model

prior to the beginning of the learning procedure. Hence, each top-level chunk

corresponds to an English phoneme, for a total of 39 single-phoneme chunks.

The decision to programme the phonemic inventory into the model in this

way follows our aim to compare the model’s performance with that of

children between 5 and 6 years old, by which age the constituent phonemes

of their native language are generally assumed to be established (e.g., Bailey

& Plunkett, 2002). Figure 1 provides an illustration of the hierarchical

structure of EPAM-VOC4:

EPAM-VOC relies on its network of long-term knowledge in order
to parse phonemic sequences

To illustrate how this works, let us take the network in Figure 1 as an

example, together with the hypothetical input /sLm/. On exposure to this

input, the model checks whether it already knows the phoneme sequence by

attempting to traverse the network in a top-down fashion. Beginning at the

top node, it searches for a link that matches the first phoneme in the input.

Figure 1. An illustration of the EPAM-VOC architecture. Nodes are represented by ellipses

and links by arrows.

4 For the purposes of this example, only five individual phonemes are illustrated below the

top node. However, as mentioned above, the model is programmed to know the whole phonemic

inventory of English prior to the beginning of the learning procedure.

8 TAMBURELLI ET AL.
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If the search is successful, the chunk associated with the newly traversed

link becomes the current chunk, and parsing will carry on in a left-to-right

fashion.

Starting at the top node, EPAM-VOC will first match the phoneme /s/

(Figure 1, third link from the left), which will then become the current node.

The model will then try to find a match for the next phoneme in the input,

namely /L/. As the first level of the hierarchy has already been traversed, the

search will only consider links that are below the current node, which in this

case is the node containing the phoneme /s/.

In the case of Figure 1, an /L/ link can be found below the current node,

providing the sequence /sL/ as the new chunk. The final phoneme is then

examined and the /m/ link traversed, with /sLm/ becoming the current chunk.

As the input contains no further phonemes, the current chunk is returned,

indicating that the phoneme sequence /sLm/ is part of the model’s long-term

knowledge.

Although some input may be known to the model as a whole sequence

(i.e., as an entire chunk, as for /sLm/ in the example above), the vast

majority of input will require several chunks in order to be represented.

When a whole match cannot be achieved, the model will attempt to match

the remainder of the input by applying its parsing procedure alternately to

the right and left edges of the input string. This change in the parsing

mechanism from the previous version of EPAM-VOC is motivated by

evidence from current psychological research, particularly in relation to

the role of primacy and recency effects, as reported in the literature on

serial recall (e.g., Hulme, et al., 1997) as well as in the NWRT literature

(e.g., Gupta, 2005).

Within the EPAM-VOC architecture, there are at least two approaches

one could adopt in order to implement these effects. One of these would be to

assign some ‘‘special’’ value to the chunks at the beginning and at the end of

a sequence, in order to mark them more prominent. However, this

implementation would necessarily involve the assignment of an arbitrary

value in order to render certain chunks more easily accessible than others.

An alternative option, and the one we follow here, is to implement a

mechanism that begins parsing the input from the left-edge (i.e., in the order

in which phonological strings are heard), but then moves to the right edge of

the input string, thus shifting its computational focus to that part of the

phonological string which is more active in memory. This method has the

advantage that it gives special status to word-initial sequences (by parsing

them first) as well as word-final ones (by parsing them before any preceding

subparts) without introducing any arbitrarily chosen computational weight.

This change in the parsing strategy does not affect the fundamental

architecture of the model, as the parse still proceeds in three basic steps:

COMPUTATIONAL MODELLING OF PHONOLOGICAL ACQUISITION 9
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(i) parsing a subpart of the input, (ii) returning the largest possible chunk,

and (iii) resuming the parse for the remainder of the input. The only

difference being that step (iii) begins elsewhere, namely at the opposite edge

of the input string. This sequence of events necessarily assumes the

involvement of a buffer where the remainder of the input string is held

whilst each subpart is being parsed. This buffer, which is not unlike the

episodic buffer discussed by Baddeley (2000a, 2000b), offers a parsimonious

method of integrating primacy and recency effects as emergent properties of

the parsing architecture rather than being programmed in ad hoc through a

weighting procedure.

In order to illustrate how this works, let us take as a working example the

input utterance ‘‘Some man’’ (phonemic representation: /sLmmæn/), together

with the network shown in Figure 1. Beginning at the left-edge, EPAM-VOC

II can traverse the hierarchy in a left-to-right fashion as far as the /sLm/

chunk, at which point traversal ends. This information is then removed from

the input and traversal begins again using /mæn/ as input, but this time

processing will involve the right-edge, while still proceeding in a left-to-right

fashion. Thus, as the full input /mæn/ cannot be matched, EPAM-VOC II

will attempt to traverse the sequence /æn/, as opposed to the sequence /mæ/.

As this sequence can be traversed successfully (i.e., the network in Figure 1

contains the sequence /æn/), the phoneme /m/ is left as the remainder of the

input, which will then be represented as a single phoneme chunk. Note

that*given the network in Figure 1*processing the sub-string /mæn/ from

the left-edge would have resulted in a different distribution of chunks, leaving

the word-final phoneme /n/ (instead of the word-medial /m/) as the one-

phoneme chunk. This is because the traversal would have proceeded to match

the left-edge sequence /mæ/ instead of the right-edge /æn/. As individual

phonemes are more likely to attract errors than phonemes that belong to

larger chunks (see section on articulating an input sequence), processing the

sub-string /mæn/ from the left-edge would have penalised the phonological

material that appears at the end of a string, contrary to what research on

recency effects would suggest. The edge at which processing begins is

alternated at each traversal. First, the input string is processed left-to-right,

and the resulting string is removed from the beginning of the input string.

The input is then processed from the end of the input string in a right-to-left

fashion, with the resulting string being removed from the input, whereupon

left-to-right processing is resumed.

During the parse, the input is also being encoded into working memory.

However, since working memory is capacity limited (e.g., Baddeley & Hitch,

1974; Cowan, 1997), the input needs to be restricted in some way such that

an input sequence that is parsed into many chunks (or even one chunk with

many phonemes within it) is limited in terms of its representation. We

10 TAMBURELLI ET AL.
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accomplish this via an interaction between working memory and long-term
knowledge, the details of which are explained below.

Incorporating working memory

EPAM-VOC II simulates the relationship between long-term knowledge

(henceforth LTK) and working memory (henceforth WM) through a system
of pointers. When parsing an input, a pointer is created to each chunk

returned at the end of a traversal, and the same pointer is then placed in

WM. The serial order of the input is maintained by noting whether parsing

began from the left-edge or the right-edge. For example, the initial parse of

/sLmmæn./ will place the pointer to the /sLm./ chunk at the beginning of WM,

the following parse will place the pointer to /æn./ at the end of WM, and the

final parse of /m./ places its pointer between the two. In essence, pointers

represent a procedure whereby a phonemic sequence is encoded in WM, and
they are relied on when the chunks need to be retrieved. That is, any

subsequent accessing of phonemic information from WM relies upon a

chunk being accessed from its associated pointer placed in WM.

As there is evidence to suggest that WM is time-limited (e.g., Baddeley &

Hitch, 1974; Gathercole & Baddeley, 1989), we limit the amount of auditory

input that can be processed in WM to a duration of 2,000 ms (following

Baddeley, Thompson, & Buchanan, 1975). This limitation interacts with the

accessing times necessary to retrieve a phonological chunk from LTK during
the parsing procedure which has been estimated by Zhang and Simon (1985)

to be 400 ms for the chunk itself plus 30 ms for each phoneme within it,

excluding the first phoneme. Thus, a three-phoneme string (e.g., /sLm/) would

total an accessing time of 460 ms (400 ms for the chunk, plus 30 ms each for

the phonemes /L/ and /m/).

As WM capacity has been argued to be dependent on the intensity of

spreading activation across items rather than on the number of items

involved (see for example Cowan, 1997; Cantor & Engle, 1993), we
implement WM limitations as a restriction on the amount of time available

to access long-term information. According to this implementation, encod-

ing can be performed accurately only as long as the total time necessary to

access the relevant input from LTK does not exceed 2,000 ms, with no

principled restriction as to the amount of pointers that can be placed in WM.

This differs from the previous version of EPAM-VOC that cut-off the

remainder of an input once the time limit of 2,000 ms was reached; for a large

input, therefore, the previous version would build a WM representation only
for the initial part, whereas the new version represents the whole input but

places a probability on correctly accessing each part of it.

In cases where the sum total of the accessing time exceeds the 2,000 ms

limit, there will be a probability of B1.00 that a pointer placed in WM can

COMPUTATIONAL MODELLING OF PHONOLOGICAL ACQUISITION 11
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subsequently access its associated chunk. Precisely, the probability will be
equivalent to the time limit (i.e., 2,000 ms) divided by the total time needed to

access all the chunks from the input. For example, if the input were

represented by five chunks whose total access time is equal to 2,300 ms, then

the probability of subsequently accessing a chunk from its associated pointer

in WM would be 2,000/2,300 �0.87.

This probability will then have an effect whenever the model requires

access to a chunk from its associated pointer. The pointer itself activates the

relevant chunks that were accessed during the initial traversal process (e.g.,
the chunks /s/, /sL/ and /sLm/ for the input /sLm/ and the network in Figure

1). Accessing a chunk from its pointer therefore involves the traversal of

these activated chunks to arrive at /sLm/. However, when the probability of

accessing a chunk falls below 1.00, the model may take an incorrect link

during traversal and end up on the wrong path. In such instances, the chunk

that is returned may be shorter or longer than the original, or it may differ

from the original in one or more of its constituent phonemes. These

eventualities simulate three well-known effects in children’s phonological
development, namely phoneme elision, phoneme epenthesis, and phoneme

substitution.

Sequences that are incorrectly retrieved will then have an effect on the

learning as well as the articulation procedures, as the functioning of both of

these is dependent on accessing chunks from the pointers that are encoded in

WM. It is to the learning procedure that we now turn (the articulation

procedure will be addressed in the next two sections).

Learning long-term phonological knowledge

The procedure through which EPAM-VOC II achieves long-term phonolo-

gical knowledge remains unaltered from that of the previous version. When

an input sequence cannot be matched with a single chunk, EPAM-VOC will

proceed to acquire new knowledge by expanding its network to include some,
or all, of the sequence that it failed to match fully (i.e., that it could match

only as a series of chunks). Recall that, after encoding a sequence, EPAM-

VOC relies on a series of pointers in order to access it, and one case in which

this sequence needs to be accessed is in order for EPAM-VOC to learn new

information. Learning occurs after the input has been parsed and the input

information has been placed as pointers into WM. Pointers are processed in

a left-to-right and pair-wise fashion, with EPAM-VOC attempting to access

the chunks associated with each pair of pointers in order to create a new
chunk that joins the information together.

Let us once again take as an example the input utterance /sLm/. Prior to

any learning, any input can only be encoded one phoneme at a time. In the

case of /sLm/, this would result in three pointers being placed in WM, for the

12 TAMBURELLI ET AL.
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phonemes /s/, /L/, and /m/ respectively. Since the total access time for these

chunks is 1,200 ms (3�400 ms), all chunks are accessed successfully. The

next step will constitute the learning procedure proper, as EPAM-VOC links

the /L/ phoneme to the /s/ phoneme by placing the former under the latter in

the hierarchy, effectively learning the phoneme sequence /sL/. The same

process is then repeated for the next pair of pointers, which link the

phonemes /L/ and /m/, obtaining the sequence /Lm/. As there are no further

pairs of pointers in this case, the learning procedure ends (see Figure 2).

Consider now the resulting network receiving the same input again. This

time, the input can be encoded as only two chunks, namely /sL/ and /m/, with

the consequence that only two pointers will be placed in WM. As both

chunks can be accessed accurately (access time is 430 ms�400 ms �830

ms), EPAM-VOC can proceed to add a /m/ link below the /sL/ chunk, thus

adding the phoneme sequence /sLm/ as part of its LTK. Hence, after two

presentations of the sequence /sLm/ the model can be said to have learnt the

word ‘‘some’’. This last step is represented as the move from the network in

Figure 2 to the one in Figure 3, with Figure 3 showing the resulting network.

One may consider learning in EPAM-VOC to be quite rapid; slowing down

the learning procedure has been successful for other variants of EPAM

models (e.g., Croker, Pine, & Gobet, 2003; Freudenthal, Pine, & Gobet,

2006). However, since EPAM-VOC is only presented with a small subset of

the natural language a child may hear, it seems sensible to have learning

proceed in the manner described. Slowing down learning will likely yield the

same set of results, but over a longer period of time.

In previous versions of EPAM-VOC, repetition performance was simu-

lated by a retrieval procedure. When confronted with an input, EPAM-VOC

would attempt to retrieve one or more chunks from LTM that would allow it

to match that input. The model performance was then judged based on how

successful this retrieval procedure was. While this was a reasonable

compromise for an earlier stage of the model’s development, the resulting

architecture did not involve production of an actual output, and thus

Figure 2. EPAM-VOC II after having been presented with the input /sLm/ for the first time.
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abstracted away from the articulation procedure that lies between the

retrieval of a phonological representation from WM and the actual

production of an utterance.

As a further development of the model it therefore seemed important to

also include as part of the modelling architecture a procedure that aims at

simulating this articulation stage.

Articulating an input sequence (performing the nonword repetition
test)

Just as we have seen for real words (see discussions above on long term

knowledge and on working memory), when the model is presented with the

phonemic representation of a nonword it will proceed to parse it by

associating it with as few chunks as possible from the long-term hierarchy,

and to subsequently encode the parse by linking these chunk(s) to a number

of pointers in WM. Articulation of a sequence involves accessing the relevant

chunk information from the pointers in WM, and then articulating each of

the phonemes contained in the resulting sequence. As we saw in our

discussion on working memory, the former process might involve an error

in accessing the relevant chunks, which will then be returned on articulation.

However, the updated version of EPAM-VOC allows errors to also occur in

the latter stage (i.e., the actual production of the phoneme sequence).

When retrieving a chunk, EPAM-VOC II calculates a probability of

correctly articulating the information contained within it based on the

processing weight of the chunk. The processing weight of a chunk is

calculated based on the frequency of its subsets, as these represent all the

chunks that need to be accessed during the traversal phase. As the frequency

of single phonemes is on average much larger than any possible sequence

Figure 3. EPAM-VOC after having been presented with the input /sLm/ twice and having

acquired LTK of this sequence.

14 TAMBURELLI ET AL.

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
B

ru
ne

l U
ni

ve
rs

ity
] 

at
 1

4:
06

 1
6 

M
ar

ch
 2

01
2 



involving that phoneme, we multiply the frequency of phoneme sequences by

multiples of five, depending on their length.5 The aim of this procedure is to

increase the impact that longer sequences might have, particularly when

compared to single phonemes. This decision is based on the assumption that

having been exposed to a phoneme sequence is developmentally more

advantageous than having been exposed to its component phonemes in

separate phonological contexts,6 as only the former type of exposure may

provide the phonological knowledge necessary in order to successfully

articulate phonemes in context. Essentially, this follows from a view of

phonological knowledge that dates back at least to Jakobson (1941)/1968),

and which finds overwhelming support throughout the developmental

literature, particularly in relation to the study of Voice Onset Time (see for

example Catts & Kamhi, 1984; Johnson & Wilson, 2002; Macken & Barton,

1980) but also in relation to general syllabic development (e.g., Demuth,

Culbertson, & Alter, 2006; Goad & Brannen, 2003, inter alia). Furthermore,

the motivation for basing correct articulation (in part) on frequency is

supported by good correlations between the frequency with which phonemes

and consonant clusters are used by the children in the Manchester corpus

(see simulations reported below) and the age of acquisition of the phonemes

and clusters (from Smit, Hand, Freilinger, Bernthal, & Bird, 1990)

[r(48) � �0.51, pB.001].

When an input sequence requires more than one chunk to represent it, then

it is clear that the model does not have knowledge of this particular sequence of

phonemes as a whole. We therefore divide the calculated frequency of a chunk

by the number of chunks required to represent the input sequence, to account

for the fact that articulation will be more demanding as the number of chunks

required to represent the input increases.

After having obtained the weight of a chunk, a probability for articulation

error is calculated by dividing the common logarithm of this weight by 4. In

essence, this sets a threshold of 10,000 (as log 10,000 �4) above which

articulation will be free from errors. Logarithms rather than raw counts were

used because different phonemes*and phonemic sequences*display mas-

sive ranges of variation, a fact that would have compromised the reliability of

our comparisons. When an articulation error does occur, a consonant is

5 The frequency of a bi-phone sequence is multiplied by 5, that of a tri-phone sequence is

multiplied by 25, while that of a quadri-phone sequence is multiplied by 125 (5�5�5), and so

on for longer sequences.
6 And, in turn, having had the opportunity to practise articulation of a phoneme sequence is

more advantageous than having practised its component phonemes in separate phonological

contexts.
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randomly selected within the chunk and substituted for another consonant,
also selected at random, from an inventory of English consonants.7 At this

stage of development, we have not yet included a sub-phonemic theory that

could provide information on the structures of*and thus on the potential

differences between*consonantal and vocalic elements. Consequently, we

concentrate on modelling performance solely within the consonantal

domain, directly inhibiting vowel errors during the production phase.8

As the consonants involved in this procedure are selected at random, the

resulting errors do not reflect the types of consonant substitutions observed
in children. Such a procedure would require the model to have knowledge of

sub-phonemic components, and it is therefore not achievable at this stage of

model development. Thus, the focus of this paper will be entirely on the

modelling of errors at the positional rather than the melodic level.

THE EXPERIMENTS

Introduction

EPAM-VOC allows us to examine error patterns in NWR performance both
across and within nonword types. However, well-established NWR tests

contain a high rate of lexical components. For example, the nonwords used by

Gathercole and Baddeley (1989) contain lexical (e.g., pennel, thickery,

dopelate) and morphological components (e.g., slading, penneriful, fenneriser).

Also, as the nonwords were not controlled for phoneme-pair frequency, it is

impossible to deduce whether*or to what extent*error patterns may be

influenced by frequency of exposure to certain phonological strings. We have

therefore collected additional data in order to assess children’s NWR
performance across nonword types. The tests included nonword sets involving

lexical and morphological components (Gathercole and Baddeley, 1989), as

well as a newly devised set that manipulates frequency as the main variable

and excludes lexical or morphological components.

Participants

Twenty-five children took part in this research, 12 males and 13 females.

They were between 5:4 and 6:8 years of age (M�6.1). The children were

recruited from four schools in and around the city of Nottingham, and they

were all monolingual native English speakers. Children had to satisfy two

7 For the purposes of this operation, the consonant that is being substituted is temporarily

removed from the inventory.
8 However, vowel articulation errors can still occur in cases where the single phoneme

contained within a chunk is a vowel.
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criteria in order to be included in the sample. First, all children had to
achieve a minimum score of 85 on a test of non-verbal intelligence. The non-

verbal test used was the Wechsler Pre-school and Primary Scale of

Intelligence 3 UK test (Wechsler, 2002). Second, in order to ensure that

their vocabulary was appropriate to their age, children had to achieve a score

of 85 or higher on the British Picture Vocabulary Scale 2 (Dunn, Dunn,

Whetton, & Burley, 1997).

Materials

Nonwords set 1: Gathercole, Willis, Baddeley and Emslie (1994)

The children were presented with two separate nonword repetition tests.

The first test was a modified version of the nonword repetition test developed

by Gathercole, Willis, Baddeley and Emslie (1994), also known as the

CNRep. This test originally involved 40 nonwords consisting of two-, three-,

four-, and five-syllable items. However, we omitted the five-syllable items

following a pilot which showed that younger children had great difficulty
repeating nonwords of this length. Thus, the children were presented with

three lengths of nonword, each containing 10 items, for a total of 30

nonwords. Nonwords at each length consisted of five items containing only

single consonants (i.e., they had a CV.CV or a CV.CVC structure, e.g.,

bannow, pennel) and a further five containing one or more consonantal

sequences. Such sequences were either true clusters (i.e., CCV structures, e.g.,

slading) or coda-onset sequences (i.e., VC.C structures, e.g., prindel).

Presentation of the 30 nonwords was split into two 15 nonword lists, and
we kept to the fixed random order that was provided on the original audio

cassette (Gathercole & Baddeley, 1996), though the track was transferred to

MP3 format for ease of administration. Each nonword list began with the

standard instructions provided on the audio-cassette (see next section),

though the practice items were removed. This is due to the fact that each set

of nonwords was presented in a counter-balanced order*hence no particular

set of nonwords could be assigned to be the ‘‘first heard’’. Therefore, no

training sets were given for any of the nonword tests.

Nonwords set 2: Newly constructed nonwords

The second set of nonwords was created by the first two authors,

consisting of two sets of 3-syllable nonwords, each containing eight

nonwords. All nonwords had primary stress on the initial syllable and
secondary stress on the final syllable. Unlike the test discussed above, these

nonwords were aimed at testing the impact that phonotactic probabilities

may have on children’s performance in NWRTs. Thus, the two groups were

divided into low-frequency (LF) and very low-frequency (VLF) items, based
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on the number of low-frequency biphones (i.e., phoneme pairs) that they

contained. LF nonwords contained a maximum of three low-frequency

biphone sequences while VLF nonwords contained a minimum of 4. The

nonwords were all constructed to be of relatively low frequency because of

the difficulty in constructing high-frequency nonwords that maintained a

similar phoneme set to those used in the CNRep.

The two groups (LF and VLF) were matched for length and the number of

phonemes. For each group, two nonwords were composed of seven

phonemes, four nonwords were composed of eight phonemes and two

nonwords were composed of nine phonemes. They were also matched for

vowel quantity (i.e., the number of short vowels and long vowels/diphthongs

that they contained), and for consonantal markedness (i.e., the number of

consonantal phonemes that have been documented as appearing relatively

late in acquisition; see Clark, 2003; McLeod, Doorn, & Reed, 2001). The

mean spoken duration was 0.91 s for the LF set and 0.92 s for the VLF set.

The spoken duration across conditions was equivalent to [t (7) �0.15,

p�.89].

Biphone frequencies were calculated based on their occurrence in the

Children’s Printed Word Database (http://www.essex.ac.uk/psychology/

cpwd/), a database of word frequencies for 5- to 9-year-old children.

Probabilities were then aggregated on a biphone basis. For example, the

word /trIp/ has a frequency of 116 and consists of four phonemes. Therefore,

the biphones /tr/, /rI/, and /Ip/ had 116 added to their respective biphone

frequencies. This method is very similar to the one used in a series of works

by Luce and colleagues (e.g., Jusczyk, Luce, & Charles-Luce, 1994; Vitevitch,

Luce, Charles-Luce, & Kemmerer, 1997; Vitevitch & Luce, 1998) and has

been found to be a good predictor of word-likeness ratings in adults (see

Frisch, Large, & Pisoni, 2000).

Finally, care was taken to use only constituent syllables that did not exist

as lexical items in the children’s printed word database and to employ

biphones that appeared in the children’s printed word database, hence none

of the biphones used had a frequency of zero.

The nonwords were recorded onto a Sony ICD-MX20 digital voice

dictaphone by a researcher unrelated to the project who was native to the

Nottingham area, so that the dialectal features would be familiar to the

children. All nonwords were converted to MP3 format using Sony Digital

Voice Editor, version 3.1 (available at http://esupport.sony.com/). The

nonwords were then arranged into the required order using Audacity

(http://www.audacity.sourceforge.net/). Two sound files were produced: one

with the nonwords in a randomised order and a second one that was the

reverse of this order. Each spoken nonword was succeeded by a 4.0 s pause

(as per the CNRep nonwords). The nonword lists were then turned back into
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MSV files so that they were compatible with the voice recorder. No practice
nonwords were provided on any of the recordings because the order of

presentation of the nonword tests was counterbalanced across all tests. The

children heard each nonword only once. The following sentences, based on

Gathercole and Baddeley (1996), were provided as instructions to the

children: ‘‘Hello, in a few seconds you will hear a funny made up word.

Please say the word aloud yourself as soon as you hear it’’.

Standardised tests

Three standardised tests were used to ensure that the children’s IQ and

vocabulary were appropriate for their age, and that they could articulate the

sounds within the nonwords. The core non-verbal tests (block design, matrix

reasoning, and picture concepts) of the Wechsler Preschool and Primary
Scale of Intelligence 3 UK (WPPSI-3 UK, Wechsler, 2002) assessed non-

verbal IQ. The British Picture Vocabulary Scale 2 (BPVS-2, Dunn, Dunn,

Whetton, & Burley, 1997) assessed vocabulary level. Appropriate levels for

age were scores of 85 or higher on the standardised scores for IQ and

vocabulary. Ability to correctly articulate phonemes was verified using the

Diagnostic Evaluation of Articulation and Phonology (Dodd, Hua, Crosbie,

Holm, & Ozanne, 2002).

Experimental design

For nonwords set 1 (CNRep) there were two independent variables:

Nonword Length and Consonant type. The first independent variable had

three levels: two-, three-, and four-syllables; and the second had two levels:
single and clustered. Both were repeated measures variables.

For nonwords set 2 there was only one independent variable*nonword

frequency*which had two levels: low frequency and very low frequency.

This was also a repeated measures variable.

For both sets of nonwords, the error position (onset, nucleus, or coda) was

also an independent variable, since we measured as our dependent variable

the number of errors made in onset position, nucleus position, and coda

position.

Procedure

The children were assessed on a one-to-one basis in their school, in a quiet

room away from their classroom. Up to four sessions were used for each child
to administer the standardised tests and the nonword tests. Each session

lasted a maximum of 15 minutes. Administration of the WPPSI-3 UK, the

BPVS-2, and the DEAP, together with the nonword tests, were interspersed

across sessions. The specific nonword repetition tests (the two that formed
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the CNRep and the two that formed the new nonword test) that each child

performed within sessions was randomised. Nonwords were played from a

Sony ICD-MX20 digital voice dictaphone (Memory Stick Digital Recorder)

through Creative TravelDock 900 Portable speakers. All children’s repetitions

were recorded onto a Sony ICD-MX20 digital voice dictaphone.

Transcription

Nonwords were broadly transcribed from the recordings, and a random

sample of 15% was then transcribed by two other researchers.9 Inter-rater

reliability was 87.3% (range: 85�92.3%). The repetition errors were then

divided according to the syllabic position in which they occurred: onset,

nucleus, or coda. As there are different approaches to the question of

syllabification, we analysed each set of errors according to the two principles

that are most commonly employed in the literature on English syllables (see

appendixes 1 and 2). The first of these is traditionally known as the

‘‘Maximal Onset Principle’’, which dates back at least to the work of

Pulgram (1970) and is often relied upon in current phonological theory (see

for example the volume edited by Bernhardt & Stemberger, 1998; as well as

much of the literature on Optimality Theory, Prince & Smolensky, 1993/

2004). According to this principle, word-medial consonants are syllabified as

onsets, unless they create a consonantal sequence which is impossible for an

English word-initial onset.

However, it has been argued that in the case of intervocalic consonants

syllabification should also take into consideration the phonotactic regula-

rities that apply to vocalic elements (e.g., Jones, 1997; Roach, 2000). For

example, according to Maximal Onset, the word ‘‘platter’’ would be

syllabified as /plæ.t3/. However, when looking at what constitutes a possible

word-final sequence in English, we find that the following vowels never occur

in a stressed position without a coda: /I e æ L # I/. Some authors have

therefore adhered to the standard proposed by the English Pronouncing

Dictionary (Jones, 1997) and allow for the Maximal Onset Principle to be

outranked, thus syllabifying ‘‘platter’’ as /plæt.3/.

Consequently, in our analysis of children’s errors we also consider this

syllabification pattern, which we label ‘‘Closed Syllabification’’, in reference

to the fact that it bans certain vowels from ending as an open syllable.

9 These were the first author and a second researcher not involved in this project but

experienced in coding nonword repetitions.

20 TAMBURELLI ET AL.

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
B

ru
ne

l U
ni

ve
rs

ity
] 

at
 1

4:
06

 1
6 

M
ar

ch
 2

01
2 



Simulating children’s performance

The same sets of nonwords were run through the EPAM-VOC II model after

it had been exposed to naturalistic input. The simulations used 12 sets of

maternal utterances from the Manchester corpus (Theakston, Lieven, Pine,

& Rowland, 2001) on the CHILDES database (MacWhinney 2000). They

had been uttered by mothers while interacting with 2- to 3-year-old children.

The average number of utterances was 25,519 (range 17,474�33,452).

The amount of input in these sets of utterances governed the amount of

input that was given to the model for each ‘‘mother’’. That is, 12 sets of input

were used, one for each mother. However, since we were simulating 5-year-

old children, our input also included parental utterances aimed at 4- to 5-

year-old children as well as stories from children’s books.10 The shift from

input based on 2- to 3-year-olds and that based on 4-to 5-year-olds was

accomplished by increasing the amount of the 4- to 5-year-old input as

learning progressed (and subsequently decreasing the amount of 2-to 3-year-

old input). For example, for any one mother, the initial input consisted of the

utterances spoken to her 2- to 3-year-old child. After 25% of the utterances

had been seen (in line with Jones et al., 2007, 2008), increasing amounts of

the 4-to 5-year-old input were introduced at the expense of some of the 2- to

3-year-old input (such that in the final stages of learning, 80% of the input

was based on the 4- to 5-year-old stimuli). Each line of 4- to 5-year-old input
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Figure 4. Onset, nucleus, and coda errors for the children for the CNRep single consonant

nonwords, for both syllabification methods.

10 These were added to represent the increase in input during the first year of schooling.
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was randomly selected without replacement from the full set of 4- to 5-year-

old input corpora. This means a high likelihood that for every simulation of

the child data, a different set of ‘‘older’’ input is used.

The parent�child utterances to 4- to 5-year-old children were from the

English-speaking files of the Watkins’ corpus, available from the CHILDES

database (MacWhinney 2000). The written input was taken from books that

would normally be read by or to 5-year-old children. Examples of the stories

used are ‘‘The Ugly Duckling’’ (Hans Christian Andersen) and ‘‘Snow

White’’ (The Brothers Grimm).

All utterances were converted into their phonemic representation using

the CMU Lexicon database (available at http://www.speech.cs.cmu.edu/cgi-

bin/cmudict), which contains the phonemic representation of over 120,000

and allows automatic conversion of utterances into phoneme sequences. The

input did not distinguish word boundaries, hence no word segmentation had

been performed on the input that was fed to the model.

A total of 120 simulations were carried out (10 for each of the mothers).

This was because, with the introduction of random utterances from the 5-

year-old input sets, we wished to ensure that the output constituted a reliable

representation of the model’s performance and was not simply due to a

potentially biased sample from the input. In addition, since the retrieval and

articulation procedures have probabilistic elements to them (cf. sections on

working memory and on articulating input sequences), each nonword test

was carried out 10 times within each simulation. This resulted in 1,200

nonword test simulations. All NWR results for the model are based on the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2s
yl-

clu
st-

on

2s
yl-

clu
st-

nu
c

2s
yl-

clu
st-

co
da

3s
yl-

clu
st-

on

3s
yl-

clu
st-

nu
c

3s
yl-

clu
st-

co
da

4s
yl-

clu
st-

on

4s
yl-

clu
st-

nu
c

4s
yl-

clu
st-

co
da

Error position

N
u

m
b

er
 o

f 
er

ro
rs

Closed-syll

Max-on

Figure 5. Onset, nucleus, and coda errors for the children for the CNRep clustered-consonant

nonwords, for both syllabification methods.
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TABLE 1
Nonword repetition accuracy (percentage accuracy, standard deviation in parentheses)

for both nonword sets, for the children and the model

Nonword set 1 (CNRep nonwords)

Single consonant Clustered consonant

2-Syllable 3-Syllable 4-Syllable 2-Syllable 3-Syllable 4-Syllable

Children 79.20 (15.79) 73.60 (19.77) 48.00 (23.09) 67.20 (19.90) 48.80 (22.42) 36.00 (25.82)

Model 78.15 (17.02) 62.38 (21.52) 41.72 (21.83) 65.25 (22.22) 51.05 (22.01) 34.60 (20.86)

Nonword set 2 (new nonwords)

LF VLF

Children 42.50 (16.93) 43.50 (18.44)

Model 48.15 (17.21) 47.13 (16.70)
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average results for each set of mother input*resulting in 12 averaged

datasets. For example, for ‘‘Anne’’, the 10 runs of the simulation that was

based on Anne’s Mother’s utterances and the 10 nonword repetition tests for

each run of the simulation (i.e., 100 nonword repetitions for each nonword)

were averaged. This was done in order to achieve a comparable number of

simulations to the number of children who participated in the nonword

study.

The model’s repetition errors were also divided according to the syllabic

position in which they occurred. Note that syllabification was used only as an

analytic tool in order to examine the error positions in the children’s and

model’s performance, and was not part of the mechanisms through which the

model achieves its output. In fact, as explained above, the chunking

procedure employed by EPAM-VOC relies solely on frequency considera-

tions and has no built-in definition of what a ‘‘syllable’’ consists of.

Results

Table 1 shows the nonword repetition accuracy data for both nonword sets,

for the children and the model. As can be seen from the table, the model

shows a good fit to the child data (within910%) for seven of the eight

datapoints.

TABLE 2
ANOVA results for children’s performance on the CNRep nonwords, for both

syllabification methods

Maximal Onset Principle

F df p hp
2

Nonword type 20.10 1,24 B.001 0.46

Nonword length 14.76 2,48 B.001 0.41

Error position 108.77 2,48 B.001 0.82

Nonword type�Nonword length 2.42 2,48 .100 0.09

Nonword type�Error position 5.54 2,48 .007 0.19

Nonword length�Error position 20.39 4,96 B.001 0.46

Closed syllabification

Nonword type 11.50 1,24 .002 0.32

Nonword length 14.40 2,48 B.001 0.38

Error position 88.28 2,48 B.001 0.79

Nonword type�Nonword length 3.16 2,48 .051 0.12

Nonword type�Error position 0.19 2,48 .825 0.01

Nonword length�Error position 10.70 4,96 B.001 0.31
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Nonwords set 1: Children’s results

Figures 4 and 5 show the raw number of onset, nucleus, and coda errors

for the CNRep nonwords, for both syllabification methods. Table 2 shows

the results of the ANOVA analyses for both syllabification methods. As the

figures clearly illustrate, exactly the same effects are seen irrespective of how

nonwords are syllabified. Table 2 also illustrates that a very similar set of

statistical effects are seen for both syllabification methods (all three main

effects and two of the three pairwise interactions are closely matched for

significance)*any further statistics in this section are therefore based on the

closed syllabification data. A 2 (nonword type: single or clustered)�3

(nonword length: 2, 3, or 4 syllables)�3 (error position: onset, nucleus, or

coda) within subjects ANOVA was performed on the children’s data. All

statistics are shown in Table 2. There was a significant effect of nonword

type, with nonwords containing consonantal sequences attracting more

errors than their single consonant counterparts. There was also a significant

effect of nonword length, with longer nonwords attracting more errors than

shorter ones. Post hoc Bonferroni tests indicated that there were significantly

more errors made for 4-syllable nonwords than both 2- and 3-syllable

nonwords (pB.001 and p�.032 respectively) and more errors made for 3-

syllable nonwords than 2-syllable ones (p�.033).

Moreover, there was an effect of error position, with syllable onsets

consistently attracting more errors than syllable codas, and syllable nuclei

being the least error-prone elements. Post hoc Bonferroni tests indicated that

there were more onset errors than coda (pB.001) and nucleus (pB.001)

errors, and significantly more coda errors than nucleus errors (p�.004).

There were no interactions between nonword type and nonword length or

nonword type and error position. However, there was a significant

interaction between nonword length and error position, indicating that as

nonword length increased, the number of onset errors increased accordingly,

yet the number of nucleus and coda errors remained stable.

Note that the increase in onset errors as nonword length increases cannot

simply be due to the fact that opportunities for making onset errors increase

with nonword length. Although longer words do have a higher ratio of onsets

TABLE 3
Ratio of onsets to codas for nonwords in the CNRep, expressed as a percentage (the

number of onsets divided by [the number of onsets� the number of codas])

Syllabic length Onsets N Codas N Ratio (% onsets)

2syll 18 19 48.6

3syll 30 20 60

4syll 40 24 62.5
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to coda consonants, the difference is not sufficiently high to explain the

pattern of error, thus excluding the possibility that the increase in onset

errors is simply a side-effect of a high number of onsets present in the stimuli.

Table 3 shows the ratio of onsets to codas in the nonwords.
Based on the raw number of onsets and codas that each nonword type

contains, it can be seen that the ratio of onset:coda increases with nonword

length. However, in the children the ratio of onset error:coda errors increases

over and above what would normally be expected based on the raw numbers

of onsets and codas. This is evidenced by calculating the onset error:coda

error ratio for each child at each nonword length, and performing one-

sampled t-tests to compare this ratio with what would be expected by chance.

At all lengths of nonword, there were significantly more onset errors than

would be expected if onset errors were simply a byproduct of the number of

onsets versus the number of codas contained in each nonword [t(24) �4.24,

pB.001 for 2-syllable; t(23) �6.46, p B.001 for 3-syllable; t(23) �5.11,

p B.001 for 4-syllable].

It is in principle possible that the difference in error position we have

observed can be explained without having to appeal to the concept of

‘‘syllable onset’’. Since syllable onsets include word-initial phonemes, it

might be the case that our analysis in terms of syllable position masks what

is actually a tendency for word-initial errors. If this is the case, the

phenomenon at issue could be explained in a linear fashion (i.e., by

appealing to the concept of ‘‘word-initial phoneme’’), without the need for

a syllabic analysis. In order to exclude this possibility, we compared word-

initial onsets to word-medial onsets and, for consistency, word-medial codas

to word-final codas. Word-initial and word-medial onset errors were

totalled across all nonword lengths. For single consonant nonwords, there

were significantly less word-initial onset errors than word-medial onset

errors [word-initial M�1.92, SD�1.21; word-medial M�4.00 SD�1.79;

t(23) � �5.22, pB.001]. The same was true for the clustered consonant

nonwords [word-initial M�1.71, SD�1.46; word-medial M�4.96

SD�2.80; t(23) � �4.70, pB.001]. The coda data are as follows. For

single consonant nonwords, word-final codas showed significantly more

errors than word-medial codas [word-medial M�0.00, SD�0.00; word-

final M�1.12, SD�0.92; t(23) � �6.23, pB.001]. The same was true of

the clustered consonant nonwords [word-medial M�0.96, SD�0.91;

word-final M�2.50, SD�1.41; t(23) � �4.21, pB.001]. Clearly, our

onset bias is not caused by a large amount of word-initial onset errors.

However, it would seem that for codas, there is a tendency for an error to

occur word-finally more than word-medially.

At first, this might look at odds with the primacy/recency advantage

described earlier, under which word-final codas would be expected to be
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less error-prone than word-medial codas. However, position is only one of
the contributing factors affecting target accuracy, with frequency being the

other, potentially more powerful, factor. While we know from primacy and

recency effects that word-initial and word-final positions have the potential

to hold a repetition accuracy advantage over word-medial positions, it is

also the case that more frequent phoneme sequences hold a repetition

advantage over lees frequent sequences11 (e.g., Munson, Kurtz & Windsor,

2005). In the case of clustered consonants nonwords, the role of frequency

in different coda positions is rather straightforward: word-medial codas
have much stronger phonotactic restrictions*and therefore have a higher

positional frequency*than word-final codas (e.g., Selkirk, 1982). The fact

that word-final codas are more prone to error in our results shows how

the role of recency is modulated by that of frequency and*in the case of

codas*frequency has the upper hand. For single-consonant nonwords, the

situation must be viewed on a case-by-case basis (at least for longer

nonwords), since no general phonotactic restrictions apply. For shorter

nonwords, on the other hand, the fact that the parsing procedure begins in
a left-to-right fashion gives an inherent disadvantage to word-final

segments, since they are more likely to end up in a single-segment chunk.

As we have seen in our discussion on long term knowledge, for longer

nonwords the situation is more complex. What emerges from this

discussion is exactly what we think is a major advantage of computational

modelling: it allows us to observe what happens when different contribut-

ing factors combine. The potential conflict between primacy/recency on

the one hand and frequency on the other is a case in point.

Nonwords set 1: Model’s results

Figures 6 and 7 show the raw number of onset, nucleus, and coda errors

for the CNRep nonwords, for both the children and the model. A 2
(nonword type: single or clustered)�3 (nonword length: 2, 3, or 4

syllables)�3 (error position: onset, nucleus, or coda) within subjects

ANOVA was performed on the model’s data. There was a significant effect

of nonword type [F(1, 11) �29.46, p B.001, hp
2 �0.73], with nonwords

containing consonantal sequences attracting more errors than their single-

consonant counterparts. There was also a significant effect of nonword

11 In fact, we also analysed primacy/recency effects for all three syllable nonwords used in the

nonword tests presented here (three syllable nonwords were used because both nonword sets

contain this length of stimuli and this length also allows for the examination of primacy and

recency). No primacy and recency effects were observed (F(2,50) � 2.52, p � .091, hp
2 � .09).

As discussed above, this is most likely because the nonwords were not designed in order to

examine primacy and recency effects, which are only likely to emerge when other contributing

factors are controlled for.
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length [F(2, 22) �144.41, p B.001, hp
2 �0.93], with longer nonwords

attracting more errors than shorter ones. Post hoc Bonferroni tests indicated

that there were significantly more errors made for 4-syllable nonwords than

both 2- and 3-syllable nonwords, and more errors made for 3-syllable

nonwords than 2-syllable ones (p B.001 in all cases).

There was also an effect of error position [F(2, 22) �717.16, p B.001,

hp
2 �0.99], with syllable onsets consistently attracting more errors than

syllable codas. Post hoc Bonferroni tests indicated that there were more onset

errors than coda and nucleus errors, and significantly more coda errors than

nucleus errors (p B.001 in all cases).12 There was no interaction between

nonword type and nonword length [F(2, 22) �2.02, p �.156, hp
2 �0.16].

However, there was a significant interaction between nonword type and error

position [F(2, 22) �38.74, p B.001, hp
2 �0.78] indicating that coda errors

increased for the clustered consonant nonwords, whereas onset and nucleus

errors remained stable across single and clustered consonant nonwords.

There was also a significant interaction between nonword length and error

position [F(4, 44) �62.76, p B.001, hp
2 �0.85], indicating that as nonword

length increased, the number of onset errors significantly increased while the

number of coda errors increased only marginally, with the number of nucleus

errors remaining stable.
As with the children’s data, the ratio of onset errors to coda errors was

over and above what would be expected on the basis of the raw frequency of

onsets and codas. This was the case for both 2-syllable [t(11) �6.43,

Figure 6. Onset, nucleus, and coda errors for the children and model for the CNRep single

consonant nonwords.

12 As far as the model is concerned, vowel errors will not be discussed as they were

deliberately inhibited (see section on articulating an input sequence). We leave the question of

simulating consonantal vs. vocalic errors for further research.

28 TAMBURELLI ET AL.

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
B

ru
ne

l U
ni

ve
rs

ity
] 

at
 1

4:
06

 1
6 

M
ar

ch
 2

01
2 



p B.001] and 3-syllable nonwords [t(11) �10.69, p B.001], though not for 4-

syllable nonwords [t(11) �0.57, p �.05].

Nonwords set 2: Children’s results

Figure 8 shows the raw frequency of onset and coda errors for nonword

set 2, for both syllabification methods; and Table 4 shows the statistical

analysis for both syllabification methods, based on a 2 (nonword type: low

Figure 7. Onset, nucleus, and coda errors for the children and model for the CNRep clustered-

consonant nonwords.
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Figure 8. Onset, nucleus, and coda errors for the children for the new set of nonwords, for both

syllabification methods.
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frequency or very low frequency)�3 (error position: onset, nucleus, or coda)

within subjects ANOVA. Exactly the same effects are seen irrespective of how

nonwords are syllabified, and any subsequent tests in this section are

therefore based on the closed syllabification data. There was no effect of

nonword type but there was an effect of error position. Post hoc Bonferroni

tests indicated that there were significantly more onset errors than coda

(p B.001) and nucleus (p B.001) errors, and significantly more coda errors

than nucleus errors (p B.001). There was also a significant interaction

between nonword type and error position indicating that the difference

between the number of onset and coda errors was greater in the low

frequency than the very low frequency nonwords.

TABLE 4
ANOVA results for children’s performance on the new set of nonwords, for both

syllabification methods

Maximal Onset Principle

F Df p hp
2

Nonword type 0.66 1,24 .425 0.03

Error position 56.78 2,48 B.001 0.70

Nonword type�Error position 3.39 2,48 .042 0.12

Closed syllabification

Nonword type 0.00 1,24 .962 0.00

Error position 58.00 2,48 B.001 0.71

Nonword type�Error position 8.25 2,48 .001 0.26

Figure 9. Onset, nucleus, and coda errors for the children and model for the new set of

nonwords.
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Nonwords set 2: Model’s results

Figure 9 shows the raw frequencyof onset and coda errors for nonword set 2,

for both the children and the model. A 2 (nonword type: low frequency or very

low frequency)�3 (error position: onset, nucleus, or coda) within subjects

ANOVA was performed on the model’s data. There was no effect of nonword

type [F(1, 11) �2.15, p �.171, hp
2 �0.16] but there was an effect of error

position [F(2, 22) �377.00, p B.001, hp
2 �0.97]. Post hoc Bonferroni tests

indicated that there were significantly more onset errors than coda (p B.001)

and nucleus (p B.001) errors, and significantly more coda errors than nucleus

errors (p B.001). However, there was no significant interaction between

nonword type and error position [F(2, 22) �0.05, p �.949, hp
2 �0.01],

indicating that*unlike the children*the model kept a constant relationship

between onset errors and coda errors across the two nonword groups.

DISCUSSION

Nonwords set 1: CNRep

Our results for the CNRep are consistent with those reported by Gathercole

and Baddeley (1989), who also observed effects of nonword type (i.e., single

vs. clustered consonants) as well as nonword length. Errors increase

proportionally to nonword length, and nonwords containing consonant

sequences attracted more errors than their single-consonant counterparts.
However, our analysis also revealed an effect for error position. Errors

occurred most often of all in the onset position, followed by errors in coda

position, and with errors in the nuclear position trailing behind. The strength

of the effect was dependent on the syllabification method used in the

description of the results. When applying the maximal Onset method, the

effect was observed only for the clustered-consonant nonwords.13 As far as

the closed syllabification method is concerned, however, the pattern is

consistent across nonword types as well as nonword lengths. As we have

seen (Table 3), this cannot be explained in terms of the ratio of onsets to codas

in the stimuli, thus appearing to be a true bias in the children’s performance.

13 A reviewer points out that, under onset maximisation, it might be the sequence

stop� liquid that is responsible for the high rate in onset errors rather than the onset position

itself. Although the type of sequence may well play a part in the distribution of errors, this

possibility is hard to evaluate since the manner in which the CNRep was constructed does not

allow to control for differences in melodic sequences. There is, however, at least one set of

nonwords in which the type of onset sequence does not account for the observed onset effect.

For the 3syllable nonwords there are three stop� liquid sequences word-initially and none

word-medially. Nevertheless, our data show a tendency for w-medial onset errors (34 vs 22 w-

initial).
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We are not aware of any NWRTs study which has identified the syllable onset

as particularly prone to repetition errors, though onsets have been found to be

particularly error-prone in relation to slips of the tongue (see for example

Berg, 1991), and to be unlike other syllabic components in affecting naming

latency (Santiago, MacKay, Palma, & Rho, 2000).14

Another interesting finding regards the interaction between error position

and length effects under close-syllabification. A comparison of error

positions revealed that the increase in the rate of errors that we observe

across nonword lengths is not due to a general increase of errors in all

positions, but almost entirely to a large increase in onset errors.

Nonwords set 2: Biphone frequency

As we have seen, no effect of nonword type was found for nonword set 2.

Prima facie, this might be taken to indicate that frequency is not a reliable

predictor for NWRT errors or, alternatively, that the two groups of nonwords

(i.e., Low Frequency and Very Low Frequency)*being both of relatively low

frequency*are not sufficiently different for a frequency effect to emerge.

However, this conclusion would be too simplistic in view of the results that

emerged from the analysis of error position. In fact, for the Low Frequency

nonwords errors occurred most often of all in the onset position, followed by

errors in coda position, and with errors in the nuclear position trailing

behind. This time the pattern is consistent regardless of the syllabification

method employed. This effect, however, was much smaller for the Very Low

Frequency nonwords, a finding which highlights once again how a syllabic

analysis can provide vital clues to the understanding of error patterns in

NWRTs. In this case, such an analysis has enabled us to discover a crucial

difference in children’s performance which would otherwise have gone

unnoticed. Although children’s overall performance does not seem to be

affected by the difference between low and a very low biphone frequency,

their pattern of errors within the syllable is somewhat different. Whilst low

frequency nonwords behave similarly to nonwords whose subparts are

lexically and morphologically more familiar (i.e., akin to those from the

CNRep, at least as far as closed syllabification is concerned), nonwords that

consist only of very low frequency biphones have a less distinct difference

between the number of onset and coda errors they attract.

14 Treiman & Danis (1988) reported a tendency for codas to attract more errors than onsets

in an experiment that tested subjects’ ability to repeat lists of nonwords. However, this was not a

standard NWRT, as it was concerned with lists rather than individual nonwords, and it

presumably tapped on a slightly different set of abilities particularly in relation to the interaction

between short-term memory and phonological performance.
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In sum, our results are in line with previous research, as we observed

effects of length and nonword type for the CNRep. However, we also

observed a tendency towards an onset bias for the newly devised nowords.

This tendency was particularly strong for the Low Frequency nonwords, and

less so for the Very Lowe Frequency set. We believe that this highlights the

importance of moving beyond linear approaches to nonword analysis and

towards more detailed analyses which take into consideration the syllabic

structure of the nonwords and their role in determining phonological

complexity, and thus nonword test design. For the CNRep, when applying

closed syllabification we observed that the onset bias increases as the

nonword length increases, so much so that virtually the whole length effect

could be explained in terms of onset errors. However, the potential presence

of an onset bias in the CNRep results remains inconclusive, as it is dependent

on the syllabification method used.

A comparison with the model’s performance

Nonwords set 1

For the CNRep, the model produced repetition results that matched those

of the children very closely. First, the model’s performance produced effects

of nonword type (single vs. clustered consonants) as well as nonword length.

Second, the model made a higher number of errors in onset than in coda

positions,15 showing that the EPAM-VOC architecture does not simply

match children’s overall performance, but can actually pick up on the more

fine-grained distinctions that emerge from a within-syllable analysis. Just as

we saw for the children, this pattern is consistent across nonword types as

well as nonword lengths. Moreover, the children’s tendency to increase onset

errors above all other error positions was also successfully simulated.

Although this tendency was not as strong as the one we observed for the

children (see Figures 6 and 7), it shows that the children’s performance is at

least in part generalisable from the input data.

In sum, although it is based on a fairly simple learning mechanism,16

EPAM-VOC II can produce repetition results that are comparable to those

of the children at three levels: (i) overall effects (of length and nonword type),

(ii) effect for error position (onsets over codas), and (iii) a tendency to

increase onset errors as nonword length increases. All three points are

15 Vowel errors are not discussed as they were deliberately inhibited due to the fact that at this

stage we are primarily concerned with the modelling of consonantal errors. We leave the question

of consonantal vs. vocalic errors for further research.
16 In fact, this simplicity could be viewed as a further strength of the EPAM-VOC model, as

it has been argued that simpler models are preferable to more complex ones, as the latter are less

readily falsifiable, and thus have less explanatory power (Fum et al. 2007, Myung, 2000).
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matched systematically, and particularly good matches are given for points (i)
and (ii).

Nonwords set 2: Biphone frequency

For nonword set 2, the model also matched the children’s performance in

that it did not show an effect of nonword-type but did reveal an effect of

error position, with more onset than coda errors. However, unlike the

children, no interaction between nonword-type and error position emerged

from the model analysis, as the ratio of onset to coda errors was virtually

identical across the two nonword sets.

A comparison with other modelling architectures

Alternative models of NWR performance have been discussed in the
literature. Although they have all contributed to our understanding of

repetition performance and the interaction between phonological knowledge

and WM, none of these models can produce simulations that match children’s

performance on all the three levels reported above.

Hartley and Houghton (1996) outline a connectionist model that encodes

syllabic as well as phonemic information in the form of built-in structural

templates. The network is then presented with nonword stimuli during a

training phase and is subsequently tested on the same nonwords during the
recall phase. By relying on a system of weight decay and node competition,

this model is able to incorporate length effects (i.e., it recalls longer nonwords

less accurately than shorter nonwords) as well as phoneme substitutions.

Gupta and Tisdale (2009) adapted a ‘‘simple recurrent network’’ model

developed by Botvinick and Plaut (2006). The model uses activation patterns

to represent well-formed phonemic sequences as part of syllabic slots and

input is presented to it one syllable at a time. The model simulates overall

accuracy patterns as well as length effects and error types (i.e., substitution,
insertion, or deletion) in NWR.

In terms of the three levels discussed previously, both of these models can

simulate length effects and error types, though they cannot account for

effects of nonword type or error position. Moreover, both models have a

large amount of built-in information, even in domains where information is

arguably available from*and therefore extractable from*the input data.

For example, both models have built-in knowledge of phonotactic regularites

which*almost by definition*are patterns of regularity in the input data.
Furthermore, the model outlined by Gupta and Tisdale (2009) also has

knowledge of what constitutes a possible syllable.

A third model, presented in Sibley, Kello, Plaut, & Elman (2008), relies on

a connectionist architecture that takes in phoneme sequences, encodes them

34 TAMBURELLI ET AL.

D
ow

nl
oa

de
d 

by
 [

B
ro

ug
ht

 to
 y

ou
 b

y 
B

ru
ne

l U
ni

ve
rs

ity
] 

at
 1

4:
06

 1
6 

M
ar

ch
 2

01
2 



as a fixed-width patterns, and then uses the encoded pattern to produce the

input sequence as output. After having been exposed to a body of input

sequences the model is able to simulate word-likeness effects, as it outputs

phonotactically legal nonwords more accurately than ill-formed nonwords.

Just as the two previous models, however, this too falls short of the three

levels simulated by EPAM-VOC II, as it only matches empirical data on

overall accuracy.

A model developed in order to simulate more specific positional effects

(rather than overall effects) is OSCAR, as described by Vousden, Brown and

Harley (2000). This is a dynamic oscillator-based model that simulates the

kind of ordering effects that make up naturalistic speech errors, also known

as ‘‘slips of the tongue’’. Importantly, it simulates the procedure by which

slips of the tongue affect syllable onsets more often that syllable codas.

However, this model was not developed to simulate NWR performance, and

therefore it does not simulate some of the fundamental patterns of NWRT,

such as length effects or effects of word-type.
In sum, EPAM-VOC II seems to be the only model that can match

empirical data on all three levels outlined previously, as well as provide a

detailed explanation of how long-term phonological knowledge interacts

with working memory in encoding, retrieving, and subsequently articulating

phonological information.

Simulating the children’s performance

Length effects

As already shown in earlier versions (Jones et al. 2007), length effects are

the result of the mechanisms that make up the WM store of EPAM-VOC (see

discussion on WM above). As longer words are more likely to exceed the

2,000 ms limit, they are more prone to encoding errors, which then emerge at

the articulation stage. Moreover, longer nonwords will be divided into a

higher number of chunks, which also places a heavier burden on the

articulatory stage, raising the potential for error even further. Note that

although the manner in which WM is implemented has changed, this does

not affect the explanation presented in Jones et al. (2007), since such

explanation is based on restrictions imposed by the 2,000 ms time limit, a

feature that is still operative in the current version of the model.

Single versus clustered consonants

The fact that performance is better on single-consonant than on clustered-

consonant nonwords can be explained in terms of the length effect discussed

previously, as clustered consonant nonwords contain on average more
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phonemes than their single-consonant counterparts, as shown in Table 5 (see

also Jones et al., 2007).

Due to being relatively longer, clustered nonwords are also more likely to
exceed the time limit placed on WM, thus attracting further errors. For the

same reason, they are also more likely to be divided into a higher number of

chunks compared to single consonant nonwords, thus resulting in poorer

performance.

If this explanation is on the right track, it will be the case that children

make more errors on clustered nonwords because*on average*they are

harder to store in WM and more difficult to access at the articulatory stage.

Onsets versus codas

The onset bias is achieved through a combination of factors which we will

consider in turn. Firstly, it must be noted that*at the stages of learning

considered in this article*the model tends to divide nonwords into chunks

of two or three phonemes.17 For example, for the CNRep nonwords, the first
four phonemes of single consonant nonwords are chunked either as [C V] [C

V] or [C V C] [V. . .].18 In the first case, the second consonant is almost always

followed by a schwa, due to the prosodic structure of the nonwords, whose

weak syllable is almost invariably in second position. Given that schwa is by

far the most frequent vowel in the model’s inventory,19 its presence will lower

the chance of error for any consonant that happens to occur in the same

chunk. Thus, any consonant that is chunked up together with a schwa will be

less prone to error compared to a word-initial consonant, which is almost
always chunked with a vowel different from schwa, and whose frequency is

necessarily lower. Although this tendency is present regardless of the

TABLE 5
Average phonemic length of nonwords in the CNRep

Nonword type Syllables Average phonemic length

Single consonant 2 4.6

3 6.6

4 8.8

Clustered consonants 2 6.8

3 9.2

4 12.0

17 This might be different if the model received more input, for example if it was to simulate

older children.
18 The [. . .] indicate that the second vowel may either end up on its own or be chunked up

with another phoneme.
19 Its frequency is 269,780, which is twice as much as the second most frequent vowel.
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syllabification method used, it is stronger when applying closed syllabifica-

tion since, by requiring that a short stressed vowel have a coda, and given

that the first vowel is often a short vowel, the second C in our [C V] [C V]

sequence will often be a coda. Consequently, any advantage in favour of the

second consonant is effectively an advantage in favour of coda position. A

clear example of this pattern can be seen when we compare the 2-syllable

nonwords ‘‘pennel’’ and ‘‘bannow’’ from the CNRep, for which the children

show an onset and a coda bias respectively. For ‘‘pennel’’, which shows a

strong onset bias, the coda is consigned to the same chunk as the schwa,

hence reducing its opportunity for error since chunks involving the schwa

tend to be of a high frequency. However, for ‘‘bannow’’, which does not

contain a schwa, the coda is consigned to a relatively low frequency vowel,

thus attracting more errors. (coda consonants are in bold) (Table 6).20

Thus, the chunking pattern that results from the current stage of learning,

together with the prosodic structure of the nonwords, work towards building

a general bias in favour of onset errors. Importantly, this bias emerges

entirely from the modelling architecture without the need for any built-in

system of syllabification.

Secondly, there are also some phonotactic pressures which must be

considered, as these too work in favour of an onset bias. It is a well-known

cross-linguistic fact that languages have restrictions on what can appear in

specific syllabic position, and English is no exception. Of particular interest

to our discussion is that there exists only one phoneme which cannot appear

in onset position, namely /E/. On the other hand, there are four phonemes

which can never fill a coda position; these are /h/, /j/, /w/, and /r/.
It follows that, all else being equal, an onset position is more likely to host

a low-frequency phoneme, since 24/25 consonants (i.e., 96% of consonants)

are under distributional restrictions that limit them to the onset position,

while only 21/25 consonants (i.e., 84% of consonants) are restricted to coda

position. A look at the average frequency of these consonants within EPAM-

VOC shows that their distributional limitations tend to translate into lower

TABLE 6
Most frequent chunking pattern of syllabic components for nonwords pennel and

bannow (CNRep)

Syllabification Chunking Error bias

Onset (/p/)

Coda (/n/)

20 Only the most recurrent chunking patterns are given here.
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frequencies. The average frequency for a consonant is just below 80,000
(77,779.08) with /t/ and /a/ at the highest and lowest end of the spectrum,

scoring 228,472 and 648 respectively. If we compare this to the frequency of

those consonants that suffer from distributional restrictions, we find that

they tend to be in the mid and lower half of the spectrum, apart from /r/: /j/

(20,599); /E/ (33,223); /h/ (63,638); /w/ (80,669); and /r/ (126,764). Thus,

phonotactic restrictions lead to an imbalance that further contributes

towards an onset bias in the model’s performance. This works together

with the chunking mechanism and the prosodic structure of the nonwords.
These factors lead to an onset bias in the model’s performance, and

subsequently to the successful simulation of children’s performance, showing

that the syllabic positions of consonantal errors can be accounted for by a

mechanism that relies solely on frequency information and does not ‘‘know’’

about syllables.

Notably, this explanation makes a precise prediction with regard to

developmental factors: as the model extends its LTK, it will gain the ability

to divide nonwords into progressively larger chunks, containing four or
perhaps even five phonemes. Thus, the schwa will no longer be contributing

its high frequency solely in favour of the coda consonant, as the word-initial

CV sequence may also end up in the same chunk, which*for single

consonant nonwords*would take the form [C V C V]. In these cases, the

high frequency of the schwa no longer brings an advantage to one specific

consonant, as the probability of errors is left entirely to the frequency of each

individual consonant. Thus, the prediction that follows is that*for older

children*the onset bias will be much less pronounced than for younger
children. At the moment, however, whether or not this is the case remains an

empirical question, since*to the best of our knowledge*no other research

has been carried out on the interaction between onset and coda errors in

NWRTs.

Onset errors increase as length effect

As shown in our results section, longer nonwords attract a much higher

number of onset errors than shorter ones, for both children and model.

Interestingly, this increase in onset errors is not entirely explicable in terms of

the relative increase in the number of onset consonants. Although longer

nonwords tend to include a higher ratio of onsets, the increase in onset errors

significantly exceeds this factor (see results section), thus calling for an

explanation.
The explanation that emerges from the EPAM-VOC II performance has

two aspects to it, both of which are in relation to frequency considerations.

As discussed in the section on articulating an input sequence, the model’s

articulatory performance is dependent on the chunking procedure that takes
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place at the parsing stage the lower the weight of a chunk, the higher the

chance that it will attract an error. As discussed above (section on onsets

versus codas), coda consonants tend to be chunked up with the schwa, thus

becoming part of relatively high frequency chunks. When we look across

different nonword lengths, it becomes apparent that this is part of a more

general tendency that involves coda consonants being regularly chunked up

with phonemes at the high end of the frequency spectrum, the schwa being

but the maximum exemplar.
To illustrate this, we have taken a sample of the most common chunking

patterns for each nonword and divided each chunk according to whether it

contained an onset or a coda.21 These chunks were then subsequently divided

according to the weight range that they fell into. Weight was calculated

following the procedure explained in the section on articulating an input

sequence. The weight range was divided into four equal parts with 10,000 set

as the maximum as this is the frequency beyond which no error is made. The

descriptive statistics are given in Table 7.
As Table 7 shows, for the 2-syllable nonwords, onsets and codas seem to

be almost evenly distributed, though a slight accuracy bias is evident in

favour of codas, 20% of which end up in the mid-to-high frequency range.

However, as nonword length increases, the distribution of onset and coda

chunks in the lower frequency ranges diverges: many more onsets than codas

are low frequency. Hence we would expect to see a sharp increase in the onset

errors relative to coda errors as nonword length increases. This is in fact what

is seen in both the child and model data.
In sum, the error bias that sees onsets being targeted more often than

codas is due to a distributional effect emerging from the interaction between

the chunking mechanism employed by EPAM-VOC and the phonemic make-

up of the experimental stimuli. On the one hand, the combination of these

two factors creates a general bias whereby chunks containing onset

TABLE 7
Low-frequency chunks in EPAM-VOC II containing either onsets or codas, for

nonwords in the CNRep

Frequency range
2-syllable chunks 3-syllable chunks 4-syllable chunks

Onset (%) Coda (%) Onset (%) Coda (%) Onset (%) Coda (%)

0�2,500 25.00 20.00 66.67 14.29 84.21 60.00

2,500�5,000 66.67 60.00 33.33 71.43 15.79 40.00

5,000�7,500 8.33 20.00 0.00 14.29 0.00 0.00

7,500�10,000 0.00 0.00 0.00 0.00 0.00 0.00

21 Chunks that contained both elements were excluded from the count.
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consonants tend to be relatively lower in frequency, as reported above. On

the other hand, the phonemic structure of the experimental stimuli provided

by the CNRep is such that the bias is more marked in longer nonwords than

in shorter ones, thus resulting in a sharp increase in onset errors.

Summary

We have presented a computational model of phonological learning, EPAM-

VOC, that is able to simulate not only the basic patterns of error across two

nonword repetition tests, but also the pattern of errors within specific syllabic

positions. We have shown that, for the nonwords used in the two tests

outlined, there is a clear onset bias for errors in the children. This effect is

also simulated in EPAM-VOC. Furthermore, the model also presents an

explanation for a bias in onset errors: onsets tend to be contained in chunks

that are of a low frequency, whereas codas tend to be contained in chunks

that are of a relatively higher frequency. Of course, the onset bias may well be

influenced by the particular nonword sets used, and it will therefore be

interesting to see if EPAM-VOC is also able to simulate children’s repetitions

that show a coda bias for errors. This is one of the next steps for the model.

While EPAM-VOC has provided good simulations of the error data in the

studies described, the model is also still some way from providing a full

account of phonological learning. For example, errors themselves are not

based on phoneme similarity or lexical influences. This is the next stage of the

model’s development, whereby an account of the actual types of errors that

occur in the children’s data can be examined.

In summary, we have provided a detailed account of the onset and coda

errors that are seen in NWRTs, illustrating an onset bias in children’s errors,

and how this bias increases with nonword length. Both of these phenomena

are also simulated in our model of phonological acquisition. EPAM-VOC

provides a good account of nonword repetition that illustrates how reason-

able assumptions concerning working memory, long-term learning, and the

interaction between the two can simulate a detailed set of children’s error

data without the need for any built-in knowledge about syllables or their

components.
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22 Please note that, unlike most dialects, the English spoken in Nottingham and the Midlands

still realises velar nasal-plosive sequences word-finally, hence the /E6/ transcription in examples

such as /6lIsterIE6/, where most English speakers would produce /E/.

APPENDIX 1
Syllabification according to Maximal Onset22
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APPENDIX 2
Syllabification according to closed syllabification
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