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Abstract:  The study of extraordinary performance has been carried out almost 

independently in two research traditions, the first emphasising practice and 

the second emphasising talent. The practice tradition has collected empirical 

evidence strongly supporting chunking as a key learning mechanism and 

practice as a prerequisite for becoming an expert. The talent tradition has 

provided convincing data for the importance of (inherited) individual 

differences in intelligence and working memory as well as for other factors 

such as starting age and handedness. If future research on extraordinary 

performance is to be successful, these two traditions must joint efforts to 

understand the mechanisms involved. Given the number of variables in play, 

their complex interactions and the fact that they evolve as a function of time, 

the use of computational modelling is necessary. 
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Expertise vs. Talent. This is both a good and a bad title. (I cannot take the credit or the 

blame for it, as this title was “imposed” on me by the organisers of the 2nd IRATDE 

conference.) It is a good title because it summarises in three words the state of the field 

devoted to the study of extraordinary performance. It is a bad title because it 

oversimplifies things. Other issues are of course important in the study of extreme 

performances. Also, it should not be “vs.”, but at least “and”, as in the title of a recent book 

of mine (Gobet, 2011). But even “and” is a bit weak, and a better title would be 

“Expertise × Talent”, to emphasize that practice and talent interact in complex ways. 

The research on extraordinary performance is highly polarized (see table 1). On the one 

hand, we have the tradition of research based on the study of “expertise”, which 

emphasises practice. On the other hand, we have the tradition of research based on the 

study of “talent”, which mostly focuses on innate talent. 

Having obtained my undergraduate degree at the University of Fribourg (Switzerland) 

during the heydays of Jean Piaget’s constructivist school of developmental psychology, I 

have always been suspicious of the facile opposition between talent and practice – 

between innate and acquired. Piaget was of course brilliant at tearing this opposition 

apart and showing that what was important was the dialectical adaptation between these 

two poles.  

Thus, for many years, my study of expert performance avoided this issue – just as Piaget, I 

simply thought it was meaningless. I studied perception and memory in experts, mostly 

chess players, collecting experimental data and building computer models. To my 

chagrin, I had to note that few colleagues in cognitive psychology were interested in 

computer models. Rather than mechanisms – complex or simple – they were interested in 

answering binary questions: serial or parallel, chunks or no chunks, and of course, innate 

or acquired? 

As is well known, innate vs. acquired has been one of the great debates in psychology. In 

fact, I  was  not  able  to  avoid  this  question  in  two  of  my  other  domains  of research. In 
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Table 1. Comparison of the Two Traditions That Have Dominated the Study of Exceptional 

Performances: On the Left, the Talent Approach; on the Right, the Expertise Approach. After Gobet 

(2011) 

Extraordinary Performance 

Talent Expertise 

Correlational studies Experimentation and modelling 

Psychology of intelligence Cognitive psychology 

Innate Acquired 

Differences between novices and experts Similarities between novices and experts 

Children/Adults Adults 

Normal and pathological Normal 

 

research on the acquisition of language, where together with colleagues I developed 

computational models of the acquisition of vocabulary and syntactic structures 

(Freudenthal, Pine, Aguado-Orea, & Gobet, 2007; Jones, Gobet, & Pine, 2007), this debate 

has been dividing the field for decades. In neuroscience, the debate about localisation of 

brain structures and brain plasticity still rages. In my teaching too, this question became 

unavoidable. I taught a class on the psychology of intelligence, and of course the dispute 

between the innate or acquired origin of intelligence was at the centre stage again.  

Then, starting for the late 1990s, I had three PhD students – Guillermo Campitelli, Merim 

Bilalić, and Philippe Chassy – who forced me to think about this issue deeply. Interestingly, 

these three students had different views, almost spanning the entire range from pure 

talent to pure practice. They also collected a considerable amount of data on this issue, 

which turned out very useful in shaping my views.  

So far, I have been talking about talent and expertise as if they form a continuum, as is 

often done in the field (see figure 1, top). However, a more fruitful representation is shown 

at the bottom of figure 1: a Cartesian plane where practice and talent form the two 

dimensions. Thus, one individual could score low on both dimension (white star), score 

high on both dimensions (black star) or have any kind of combination of them. 

Chess as a Research Domain 

Chess is an interesting domain for studying the question of expertise vs. talent, as large 

amounts of empirical data have been collected on this game, mostly from the expertise 

tradition. Chess has the following advantages for studying extraordinary performance 

(Gobet, 1998b). It is a complex game that requires many years of study to master. Its 

structure makes it fairly easy to design experiments. Most importantly, chess offers the 

advantage that skill level is precisely measured by the Elo rating (Elo, 1978), which is 

regularly updated. This allows for an accurate description of the learning trajectory. In 

fact, much of what we know about expertise comes from research into chess (Gobet, de 

Voogt, & Retschitzki, 2004). 

In what follows, I first present findings on chess from the expertise tradition. Then, I 

present findings from the talent tradition. Any serious theory of expertise and talent 

should be able to explain these data. A discussion will follow, trying to put together what 

has been learnt from these two lines of research. 

Research on Expertise 

Research on chess has repeatedly shown the importance of knowledge. Two tasks are 

typical in this line of research (De Groot, 1965). In the recall task, a chess board is briefly 

presented (say 5 seconds), then removed from view, and participants have to replace as 

many  pieces  as  they  can.  In  the  choose-a-move  task,  a  position  is  presented  with or 



 Expertise vs. Talent  
 

77 

 

 

  

 
 

Figure 1. Two representations of the relationship 

between talent and practice. 

 Figure 2. Illustration of the concepts of a chunk 

and a condition/action pair. 

 

without time limit and participants have to select a move. In both tasks, stronger players 

outperform weaker players.  

Critically, Chase and Simon’s (1973) research has shown that the same basic knowledge 

structures – chunks – can account for the results of both tasks. Chunks are memory 

structures that are units of both perception and meaning. They are attached to relevant 

information, for example a move to play given a certain pattern on the board (see figure 

2). Larger chunks are built recursively on smaller chunks. In a memory task, pointers to 

chunks can be put in short-term memory (STM). Although all players have a limited STM 

capacity, stronger players can store larger chunks and thus perform better in the recall 

task. In a choose-a-move task, the patterns on the board elicit chunks in long-term 

memory (LTM), which in turn give access to potentially useful information (e.g., what kind 

of move to play). Chase and Simon note that it takes 10 years, or 10,000 hours, of 

dedicated practice to reach a high level of expertise in chess and in any other domain. 

They justify this number by the large number of chunks (about 50,000) and the associated 

actions that must be acquired. 

While chunking theory elegantly accounted for key empirical results, it suffered from two 

main weaknesses. First, it underestimated the role of high-level knowledge. Chase and 

Simon assumed a maximal size of 5–6 pieces, but a number of studies have shown that 

masters use larger chunks (see De Groot & Gobet, 1996). In some cases, the entire 

position can be captured by a single memory structure. Second, it overestimates the time 

to encode information in LTM (Charness, 1976). 

Template Theory 

In order to remedy these weaknesses while keeping its strengths, chunking theory was 

modified and expanded into template theory (Gobet & Simon, 1996b, 2000), which aimed 

to account both for low-level and high-level aspects of cognition. The new theory assumes 

an LTM, where chunks are stored, and a visual STM with a limited capacity (4 chunks). STM 

is dynamic, in the sense that older chunks are continuously updated by new incoming 

information. The largest chunk recognized so far is used to direct eye movements; the 

rationale is that eye movements that were useful in the past are likely to be useful in the 

future if a similar constellation of pieces is present on the board. The model uses time 

parameters, such as the time to create a new chunk (8 seconds) and the time to encode a 

chunk into STM (50 milliseconds). 
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Chunks that recur often evolve into more complex data structures – templates. Templates 

are schema-like structures that have both a core (with constant values) and slots (with 

variable values). For example, in chess, the core contains information similar to Chase and 

Simon’s chunks, while the slots encode variable information about pieces, squares and 

chunks. Based on computer simulations, it takes 250 ms to encode information into slots. 

This is much faster than the 8 seconds needed to create a chunk (Chase & Simon, 1973). 

Templates are also related to other information useful in a given situation. In chess, this 

could be information about possible moves, evaluations, plans, and so on. Finally, 

templates can be linked to other templates. This makes it possible to carry out search at a 

higher level of abstraction than is normally possible.  

As noted by Richman, Gobet, Staszewski and Simon (1996), template theory explains 

better than chunking theory why it takes 10,000 hours of practice to reach a high level of 

expertise. Time is needed to acquire chunks, learn templates, learn possible actions, link 

chunks or templates to actions and create links between chunks/templates that are 

similar. In addition, time must be factored in to combat forgetting. 

CHREST 

Template theory is implemented as a computer program, known as CHREST (Gobet et al., 

2001). During the learning phase, the program incrementally acquires chunks and 

templates by scanning a large database of domain-representative items. This makes it 

possible to create networks of various sizes and thus simulate various expertise levels. 

These networks, together with assumptions about time and capacity parameters (De 

Groot & Gobet, 1996; Gobet & Simon, 2000), enable the model to make unambiguous and 

quantitative predictions. I briefly review some tasks in which such predictions were made. 

While the model has been used in a number of domains, such as awele, physics, computer 

programming, concept formation and language acquisition, I will focus on chess due to 

space constraints. 

Perception: Eye Movements. The key insight of De Groot (1965) was that perception, 

and not thinking, was at the core of expertise. If this is correct, then eye movements during 

the first seconds of the presentation of a board should show important differences 

between masters and amateurs. This is what was found in a recall task with a presentation 

time of 5 seconds (De Groot & Gobet, 1996): masters had shorter average fixation times 

(250 ms vs. 300 ms), showed less variance in their fixation times, covered more squares of 

the board and tended to fixate important squares more often. The results are simulated by 

CHREST, both for masters and amateurs. Figure 3 shows the data of a master and an  

 
 

 
 

Figure 3. Eye fixations of a master and simulations with CHREST (After De Groot & Gobet, 1996). 
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amateur for a specific position, as well as the computer simulations. While the eye scans 

are not identical – there are also considerable individual differences between humans of 

similar skill level – the simulations capture all the key features just discussed. 

Recall of Random Positions. What happens with random material? One of Chase and 

Simon’s (1973) classical results was that masters’ superiority with game positions 

disappears with random positions. When CHREST was developed, simulations led to a 

non-intuitive prediction: there should be a skill effect with random positions too, for a 

rather simple reason: given their larger chunk networks, masters can recognise more 

chunks than amateurs, just by chance. A reanalysis of the literature and the collection of 

new data confirmed CHREST’s predictions (Gobet & Simon, 1996a; see figure 4). This 

result is important theoretically, for two reasons. First, it is difficult to explain for most 

theories of expertise (for details, see Gobet, 1998b). Second, it shows that the knowledge 

acquired during extended practice leads to subtle differences that are implicit and 

unconscious. 

Look-Ahead Search. Supporting the importance of perception, De Groot (1946) did not 

find clear skill differences in the statistics of the choose-a-move task (e.g. number of 

moves considered, depth of search or rate of search). In particular, top-level grandmasters 

did not search more than candidate masters. More recent studies suggest that the state of 

affairs is more complicated and that better players do search more (Charness, 1981; 

Gobet, 1998a; Saariluoma, 1992). The skill differences are particularly clear with complex 

board positions (Campitelli & Gobet, 2004). There are also considerable differences as a 

function of specialisation (Bilalić, McLeod, & Gobet, 2009), which in chess depends on the 

kind of opening moves players adopt. Within their area of specialization, players tend to 

search more in depth and less in breadth. Some of these skill differences are captured by 

SEARCH, a probabilistic model derived from CHREST (Gobet, 1997). 

The skill differences on perception, memory and problem solving that I have briefly 

illustrated in this section with chess are present in most, if not all domains of expertise 

(Ericsson, Charness, Feltovich, & Hoffman, 2006; Gobet, 2011). As shown above, they are 

well explained by template theory, to the point that they can be simulated by computer 

models. The acquisition of a large number of chunks and templates clearly suggests the 

importance of practice in becoming a top performer in a given domain of expertise. This 

is what Chase and Simon (1973) emphasised at the end of their classic article, although 

they were open to the possibility of talent.  

 
 

 
Figure 4. Percentage correct in a recall task as a function of skill level and type of position, for humans 

and CHREST. 
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Deliberate Practice 

The role of practice has been made more central in the deliberate practice framework 

(DP; Ericsson, Krampe, & Tesch-Römer, 1993). According to DP, innate individual 

differences do not impose a limit on performance, except for motivation, general activity 

levels and height in some sports. Rather, expert performance improves monotonically 

with the amount of DP. Practice activities aim to improve performance by providing 

feedback and optimising error correction. These activities are typically effortful and not 

enjoyable. They can be carried out only for a few hours a day, due to the risk of injuries 

and burnout. Emphasis is given to individual practice, which increases the efficiency of DP 

activities, rather than group practice. The framework also stresses the support of the 

environment and in particular of the family. 

Strong support for DP was provided from experiments where college students with 

average memory spans were trained in the digit-span task (Ericsson, Chase, & Faloon, 

1980). After sufficient practice, these students could memorise longer digit sequences 

than individuals that were thought to enjoy innate talent. The role of DP has received 

support from many other domains, including chess (de Bruin, Smits, Rikers, & Schmidt, 

2008; Gobet & Campitelli, 2007), music (Ericsson et al., 1993; Meinz & Hambrick, 2010) 

and sports (Ward, Hodges, Starkes, & Williams, 2007). In these studies, participants are 

typically asked to estimate retrospectively how many hours they had spent in practice 

activities, and the results are correlated with their skill level. The results show that higher 

skilled individuals engage more in DP. Chess is one of the few domains enabling 

quantification of expertise and thus making it possible to compute the amount of variance 

explained by DP. In three adult samples, the correlations between DP and skill were .42, 

.48 and .54 (Charness, Tuffiash, Krampe, Reingold, & Vasyukova, 2005; Gobet & Campitelli, 

2007). Thus, the amount of DP explains between 17.6% and 29.2% of the variance in skill. 

While the data supporting the role of DP as a necessary condition for attaining the highest 

levels of skill are substantial, discordant results are present as well. Contrary to DP’s 

predictions, group practice (including competition) has been shown to be at least as 

efficient as individual practice, for example in chess and soccer (Campitelli & Gobet, 

2008; Gobet & Campitelli, 2007; Ward et al., 2007). In addition, individual differences are 

considerable, as reflected in the high variability in the time needed to reach mastership in 

chess: while players on average took 11,000 hours of DP to become masters, some players 

needed as few as 3,000 hours, while others needed up to 24,000 hours (Gobet & 

Campitelli, 2007). This 1:8 ratio is simply inconsistent with DP. Campitelli and Gobet 

(2008) also present results at variance with the assumption that expert performance is a 

monotonic function of practice. For example, although masters had accumulated the same 

amount of DP as candidate masters after three years of playing chess seriously, their 

rating was higher (see figure 5). Figure 5 also shows that, although candidate masters had 

devoted much time to DP, they improved little after three years. 

 
 

 

Figure 5. International rating in masters and candidate masters as a function of years of practice since 

starting playing seriously. Error bars indicate standard deviations. (After Campitelli & Gobet, 2008.) 
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Another discrepancy between theory and data consists in the training methods used. 

Ericsson et al. (1993) propose that, with chess players, DP consists in trying to predict the 

best move in published chess games and then receiving feedback. However, chess 

players’ practice is more varied and complex, being in part supported by new computer 

technology (Gobet et al., 2002). Players play training games against other players (either 

directly or on the internet) or against computer programs. They also spend substantial 

time (up to 50% according to some estimates; Chassy & Gobet, 2011) studying opening 

theory. This consists in a number of activities, typically carried out using books and 

electronic databases: memorising opening variations, studying typical tactical and 

strategic manoeuvres, and finding new moves or ideas to surprise their future opponents 

(Campitelli & Gobet, 2008; Chassy & Gobet, 2011). Together, these results indicate that 

chess players’ training includes more tasks than the type of repetitive activities 

emphasised by DP. 

DP has also been criticised on methodological grounds (Davids, 2000; Gobet, 2011; 

Sternberg, 1996). The research on DP is mostly correlational and rarely uses control 

groups (i.e., individuals that tried but failed to become experts), and it is thus difficult to 

draw conclusions about the causal role of talent and (deliberate) practice. For example, it 

could be the case that, following self-selection, more gifted individuals remain in the 

domain and thus log in more DP.  
 

Research on Talent 

Intelligence 

As noted above, the proponents of talent argue that practice is not sufficient for reaching 

the highest levels of expertise, and that other factors are in play. These can be either 

genetic, innate but not genetic, or occurring after birth. There is considerable evidence 

from the fields of personality and intelligence that there exist large individual differences, 

in part inherited, and it is plausible that at least some of these differences affect the 

acquisition of high levels of expertise (Eysenck, 1995; Mackintosh, 1998). Similarly, 

individual differences exist with respect to learning, attention and working memory. For 

example, a study on piano expertise (Meinz & Hambrick, 2010) has shown that working 

memory capacity accounted for expertise level beyond DP. Another example comes from 

research on job performance. Meta-analyses have established that g is the best predictor 

of job performance, with an average correlation of .53; this correlation is higher than 

correlations between job performance and education level, job experience, interviews 

and letters of reference (Schmidt & Hunter, 1998). With respect to expertise, it is important 

to note that this correlation is higher with complex occupations than with simple ones, and 

remains when one limits the analysis to high levels of experience (Schmidt et al., 1988).  

A fair amount of research has been carried out on the relationship between chess skill 

and cognitive abilities, including intelligence. Three studies have shown that chess 

playing children have higher intelligence than children that do not play chess, and that 

chess skill positively correlates with IQ (Bilalić, McLeod, & Gobet 2007; Frydman & Lynn, 

1992; Horgan & Morgan, 1990). The picture is more complex with adults. Some studies 

found no differences with respect to general intelligence and visuo-spatial memory 

between a chess group and a control group (Djakow, Petrowski, & Rudik, 1927; Waters, 

Gobet, & Leyden, 2002). Other studies (Doll & Mayr, 1987; Grabner, Stern, & Neubauer, 

2007) found significant differences between chess players and control samples in 

intelligence measures. Grabner et al. also found a significant correlation between chess 

skill and intelligence, even when the amount of DP is controlled for statistically. As all 

masters had verbal IQ above 110 and numerical IQ above 115, their data also suggest that 

a certain level of intelligence is necessary to reach a high level of chess expertise. 
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Figure 6. Average age at starting to play seriously as a function of chess skill (after Gobet & Campitelli, 

2007). The error bars indicate standard deviations. 

 

Sensitive Period 

Beyond practice and innate differences, other factors are important to account for high 

levels of performance. In line with research on language acquisition and the development 

of the visual system, it seems plausible that there exists a sensitive period for starting 

practicing, perhaps due the fact that the human brain is more plastic at younger ages (Elo, 

1978). This possibility gained support with Gobet and Campitelli’s (2007) study, where the 

correlation between starting age and chess skill was -.37 (similar correlations were found 

in Charness et al., 2005, and Grabner et al., 2007). Nearly all players with an international 

title had started practicing chess seriously at 12 years old or earlier (see figure 6). More 

specifically, the probability of becoming an international-level player was .24 for players 

who started to play seriously at 12 or before, but only .02 for players who started after 12. 

This result cannot be explained by assuming that children starting earlier accumulate 

more DP (Ericsson et al., 1993): after controlling for DP, the partial correlation between 

skill and starting age was still significant (r = -.40). 

Handedness  

In their theory of talent, Geschwind and Galaburda (1985) proposed that, following high 

exposure to testosterone in the uterus, the right hemisphere of the brain develops more 

than normally, with a concomitant increase of the probability of being talented in visuo-

spatial domains and being non-right-hander (i.e., left-handed or ambidextrous). 

Cranberg and Albert (1988) and Gobet and Campitelli (2007) addressed this question 

with chess skill using a questionnaire about hand preference and found that the 

proportion of non-right-handers is higher in the chess population (18%) than in the 

general population (around 12%). However, in both cases, handedness did not 

discriminate chess players of different skill levels. 

Season of Birth 

The season of birth offers a possible biological marker for superior performance, for 

example due to the effect of viruses on brain development during pregnancy. Gobet and 

Chassy (2008) found that expert chess players in the Northern hemisphere (N = 41,771) 

tended to be born more often in the first half of the year (52.3% births). This difference is 

statistically significant when tested against the null hypothesis that the number of births in 
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each month is proportional to the number of days. The pattern of results also differed from 

the distribution of births in the overall population of European Union countries from 1973 

to 2001 (N = 104,834,388; see figure 7). The effect was even stronger with grandmasters 

(56.9% births in the first half of the year). The standard explanation for seasonality effects 

in sports and school education is that children born earlier compete with younger 

children of the same year cohort, which gives them a considerable advantage (more 

physical strength and better coordination) and leads to younger children dropping out. 

However, this explanation does not apply to Gobet and Chassy’s data: typically, there is no 

age selection in chess and children compete with both younger and older children and 

with adults. In addition, these data are international and include all sorts of cut-off dates 

for school entry. 

Discussion 

This paper has offered glimpses into the rich data that have been collected in the study of 

outstanding performance. While the focus has been on chess, a domain that has unique 

qualities for this kind of study, its conclusions generalise to most fields where some 

individuals vastly outperform the majority. In chess as in other domains, research has 

been polarised, with the tradition on talent emphasising the role of innate abilities and 

other factors occurring early in life, and the tradition on expertise emphasising the role of 

practice. From the expertise tradition, we have learnt that experts acquire a substantial 

amount of knowledge stored as chunks and templates. We also know that DP plays an 

important role in the acquisition of skill. However, individual variability in reaching the 

top is substantial, which counts against the monotonicity assumption, and practice 

encompasses more varied training activities than argued by Ericsson et al. (1993). From 

the talent tradition, we know that (deliberate) practice is only part of the story, and that 

other factors play a role in the acquisition of skill. These include starting age, seasonality 

of birth, handedness and individual differences in intelligence and working memory, 

which are in part inherited. Together, these results suggest that practice is a necessary, but 

 
 

 
 

Figure 7. Percentage of monthly births for the EU population and EU chess players rated higher than 

2000 points (i.e., experts). The y axis on the right shows the difference chess players percentage minus 

population percentage. (After Gobet & Chassy, 2008). 
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not sufficient condition for reaching high levels of expertise (Campitelli & Gobet, 2011; 

Hambrick & Meinz, 2011).  

As noted by Ericsson et al. (1993), it has been extremely difficult to identify genes related 

to specific aspects of talent. There are at least two reasons for this. First, it is not possible 

to use standard behavioural-genetic methods, most importantly twin studies, because top-

level performers are rare by definition. Second, it is very unlikely that the complex 

behaviour characterising skilled performance depends on a single gene. On the contrary, 

as noted by Chassy and Gobet (2010), recent research in genetics shows that cognitive 

processes are underpinned by the regulation of the expression of numerous genes. It is 

also likely that different patterns of alleles are possible for excelling in a given domain. 

This makes it much harder to identify the relevant genes than with traits that are coded by 

a single gene. 

That multifarious factors are involved in the acquisition of skill has of course been noted 

by previous authors (Ericsson et al., 2006; Gagné, 2004; Simonton, 1999), although they 

have tended to favour one of the two traditions. In addition to the factors mentioned 

above, one can also point to the environment (family and beyond), the cultural and 

historical context and of course luck. One needs also be aware that seemingly small 

factors can have colossal future consequences (e.g., the Matthew effect in science; 

Merton, 1968), which suggests that the acquisition of skill might be chaotic in nature. 

The complexity of the development of expertise might be illustrated by the question of 

how innate differences interact with practice and other factors. Let us start with the simple 

causal model depicted in the left handside of figure 8. The fact that performance is 

assumed to impact on practice by a feedback loop already makes this model non-linear. 

Adding one box for the environment adds considerable complexity (figure 8, right 

handside). 

 
 

 
 

 

 
 

Figure 8. Two models of the link between performance, practice and intelligence. 

 
 

 

 
 

Figure 9. A more complex version of the models of figure 8, with the time dimension added. 
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The acquisition of skill occurs as a function of time, which means that we deal with what 

mathematicians and physicists call a dynamical system. As shown by figure 9, this rends 

the model much more complex, not only because the time dimension is added, but also 

because the number of causal links and possible interactions vastly increases. When we 

remember that the relations between variables are not necessarily linear, we realise that 

making predictions from such as system is prohibitively difficult. 

Given the complexity and number of variables involved, their dynamic and chaotic nature, 

and the number of potential interactions, it is simply impossible to address the question of 

the acquisition of skill with verbal theories alone. Furthermore, mathematical models are 

likely to become rapidly intractable. This leaves us with the conclusion that the use of 

computational models is necessary to address such a complex question without vastly 

simplifying it. Progress has been made in this respect with the CHREST cognitive 

architecture, which captures important dynamic aspects of the acquisition of expertise, 

although work has admittedly focused on phenomena favoured by the practice tradition. 

An interesting avenue is to systematically vary CHREST parameters as proxies for 

individual differences. Future research should explore how CHREST and other 

computational models can also account for data gathered in the talent tradition. 

References 

Bilalić, M., McLeod, P., & Gobet, F. (2007). Does 

chess need intelligence? A study with young 

chess players. Intelligence, 35, 457–470. 

Bilalić, M., McLeod, P., & Gobet, F. (2009). 

Specialization effect and its influence on 

memory and problem solving in expert chess 

players. Cognitive Science, 33, 1117–1143. 

Campitelli, G., & Gobet, F. (2004). Adaptive expert 

decision making: Skilled chessplayers search 

more and deeper. Journal of the International 

Computer Games Association, 27, 209–216. 

Campitelli, G., & Gobet, F. (2008). The role of 

practice in chess: A longitudinal study. 

Learning and Individual Differences, 18, 446–

458. 

Campitelli, G., & Gobet, F. (2011). Deliberate 

practice: Necessary but not sufficient. Current 

Directions in Psychological Science, 20, 280–

285. 

Charness, N. (1976). Memory for chess positions: 

Resistance to interference. Journal of 

Experimental Psychology: Human Learning 

and Memory, 2, 641–653. 

Charness, N. (1981). Search in chess: Age and skill 

differences. Journal of Experimental 

Psychology: Human Perception and 

Performance, 7, 467–476. 

Charness, N., Tuffiash, M., Krampe, R., Reingold, E., 

& Vasyukova, E. (2005). The role of deliberate 

practice in chess expertise. Applied Cognitive 

Psychology, 19, 151–165. 

Chassy, P., & Gobet, F. (2010). Speed of expertise 

acquisition depends upon inherited factors. 

Talent Development and Excellence, 2, 17–27. 

Chassy, P., & Gobet, F. (2011). Measuring chess 

experts’ single-use sequence knowledge: An 

archival study of departure from ‘theoretical’ 

openings. PLoS One, 6(11): e26692. 

doi:10.1371/journal.pone.0026692. 

Cranberg, L., & Albert, M. L. (1988). The chess 

mind. In L. K. Obler & D. Fein (Eds.), The 

exceptional brain. Neuropsychology of talent 

and special abilities (pp. 156–190). New York: 

Guilford press. 

Davids, K. (2000). Skill acquisition and the theory 

of deliberate practice: It ain’t what you do it’s 

the way that you do it! International Journal of 

Sport Psychology, 31, 461–466. 

de Bruin, A. B. H., Smits, N., Rikers, R., & Schmidt, H. 

G. (2008). Deliberate practice predicts 

performance over time in adolescent chess 

players and drop-outs: A linear mixed models 

analysis. British Journal of Psychology, 99, 473–

497. 

De Groot, A. D. (1965). Thought and choice in 

chess (first Dutch edition in 1946). The Hague: 

Mouton Publishers. 

De Groot, A. D., & Gobet, F. (1996). Perception and 

memory in chess. Assen: Van Gorcum. 

Djakow, I. N., Petrowski, N. W., & Rudik, P. A. (1927). 

Psychologie des Schachspiels. Berlin: de 

Gruyter. 

Doll, J., & Mayr, U. (1987). Intelligenz und 

Schachleistung – Eine Untersuchung an 

Schachexperten. Psychologische Beiträge, 29, 

270–289. 

Elo, A. (1978). The rating of chessplayers, past and 

present. New York: Arco. 

Ericsson, K. A., Charness, N., Feltovich, P. J., & 

Hoffman, R. R. (2006). The Cambridge 

handbook of expertise. New York, NY: CUP. 

Ericsson, K. A., Chase, W. G., & Faloon, S. (1980). 

Acquisition of a memory skill. Science, 208, 

1181–1182. 

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. 

(1993). The role of deliberate practice in the 

acquisition of expert performance. 

Psychological Review, 100, 363–406. 

Eysenck, H. J. (1995). Genius: The natural history of 

creativity. New York: Cambridge University 

Press. 

Freudenthal, D., Pine, J. M., Aguado-Orea, J., & 

Gobet, F. (2007). Modelling the 

developmental patterning of finiteness 

marking in English, Dutch, German and 

Spanish using MOSAIC. Cognitive Science, 31, 



F. Gobet 86 

311–341. 

Frydman, M., & Lynn, R. (1992). The general 

intelligence and spatial abilities of gifted 

young Belgian chess players. British Journal of 

Psychology, 83, 233–235. 

Gagné, F. (2004). Transforming gifts into talents: 

The DMGT as a developmental theory. High 

Ability Studies, 15, 119–147. 

Geschwind, N., & Galaburda, A. M. (1985). 

Cerebral lateralization: Biological 

mechanisms, associations and pathology. A 

hypothesis and a program for research. 

Archives of Neurology, 42, 428–459. 

Gobet, F. (1997). A pattern-recognition theory of 

search in expert problem solving. Thinking 

and Reasoning, 3, 291–313. 

Gobet, F. (1998a). Chess thinking revisited. Swiss 

Journal of Psychology, 57, 18–32. 

Gobet, F. (1998b). Expert memory: A comparison 

of four theories. Cognition, 66, 115–152. 

Gobet, F. (2011). Psychologie du talent et de 

l’expertise [Psychology of talent and 

expertise]. Bruxelles: De Boeck. 

Gobet, F., & Campitelli, G. (2007). The role of 

domain-specific practice, handedness and 

starting age in chess. Developmental 

Psychology, 43, 159–172. 

Gobet, F., & Chassy, P. (2008). Season of birth and 

chess expertise. Journal of Biosocial Science, 

40, 313–316. 

Gobet, F., de Voogt, A. J., & Retschitzki, J. (2004). 

Moves in mind. Hove, UK: Psychology Press. 

Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., 

Jones, G., & Oliver, I. et al. (2001). Chunking 

mechanisms in human learning. Trends in 

Cognitive Sciences, 5, 236–243. 

Gobet, F., & Simon, H. A. (1996a). Recall of rapidly 

presented random chess positions is a 

function of skill. Psychonomic Bulletin & 

Review, 3, 159–163. 

Gobet, F., & Simon, H. A. (1996b). Templates in 

chess memory: A mechanism for recalling 

several boards. Cognitive Psychology, 31, 1–

40. 

Gobet, F., & Simon, H. A. (2000). Five seconds or 

sixty? Presentation time in expert memory. 

Cognitive Science, 24, 651–682. 

Grabner, R. H., Stern, E., & Neubauer, A. C. (2007). 

Individual differences in chess expertise: A 

psychometric investigation. Acta 

Psychologica, 124, 398–420. 

Hambrick, D. Z., & Meinz, E. J. (2011). Limits on the 

predictive power of domain-specific 

experience and knowledge in skilled 

performance. Current Directions in 

Psychological Science, 20, 275–279. 

Horgan, D. D., & Morgan, D. (1990). Chess 

expertise in children. Applied Cognitive 

Psychology, 4, 109–128. 

Jones, G., Gobet, F., & Pine, J. M. (2007). Linking 

working memory and long-term memory: A 

computational model of the learning of new 

words. Developmental Science, 10, 853–873. 

Mackintosh, N. J. (1998). IQ and human intelligence. 

Oxford: Oxford University Press. 

Meinz, E. J., & Hambrick, D. Z. (2010). Deliberate 

practice is necessary but not sufficient to 

explain individual differences in piano sight-

reading skill: The role of working memory 

capacity. Psychological Science, 21, 914–919. 

Merton, R. K. (1968). The Matthew effect in science. 

Science, 159, 56–63. 

Richman, H. B., Gobet, F., Staszewski, J. J., & Simon, 

H. A. (1996). Perceptual and memory 

processes in the acquisition of expert 

performance: The EPAM model. In K. A. 

Ericsson (Ed.), The road to excellence (pp. 

167–187). Mahwah, NJ: Erlbaum. 

Saariluoma, P. (1992). Error in chess: The 

apperception-restructuring view. 

Psychological Research, 54, 17–26. 

Schmidt, F. L., & Hunter, J. E. (1998). The validity 

and utility of selection methods in personnel 

psychology: Practical and theoretical 

implications of 85 years of research findings. 

Psychological Bulletin, 124, 262–274. 

Simon, H. A., & Chase, W. G. (1973). Skill in chess. 

American Scientist, 61, 393–403. 

Simonton, D. K. (1999). Origins of genius. Oxford: 

Oxford University Press. 

Sternberg, R. J. (1996). Costs of expertise. In K. A. 

Ericsson (Ed.), The road to excellence (pp. 

347–354). Mahwah, NJ: Erlbaum. 

Ward, P., Hodges, N. J., Starkes, J. L., & Williams, A. 

M. (2007). The road to excellence: Deliberate 

practice and the development of expertise. 

High Ability Studies, 18, 119–153. 

Waters, A. J., Gobet, F., & Leyden, G. (2002). Visuo-

spatial abilities in chess players. British 

Journal of Psychology, 30, 303–311. 

 

The Author 

 

After having held research and teaching positions at Carnegie Mellon 

University, the University of Nottingham and Brunel University London, 

Fernand Gobet is currently Professor of Cognitive Psychology at the 

University of Liverpool. His main research interest is the psychology of 

expertise and talent, which he has studied in numerous domains 

including board games, physics, computer programming, music, sport, 

business, language acquisition, nursing and physiotherapy. His research 

combines experimental methods with computational modelling. He has 

authored six books, including four on the psychology of expertise and 

talent. 
 


