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Abstract Expert computer performances in domains such as chess are achieved
using techniques different from those which can be used by a human expert. The
match between Gary Kasparov and Deep Blue shows that human expertise is able to
balance an eight-magnitude difference in computational speed. Theories of human
expertise, in particular the chunking and template theories, provide detailed compu-
tational models of human long-term memory, how it is acquired and retrieved. We
extend an implementation of the template theory, CHREST, tosupport the learn-
ing and retrieval of categorisations of chess positions. Our extended model provides
equivalent performance to a support-vector machine in categorising chess positions
into opening, and reveals how learning for retrieval relates to learning for content.

1 Introduction

Building a machine which exhibits intelligent behaviour has been a long sought-
after dream, particularly in the fields of artificial intelligence (AI) and cognitive sci-
ence. Two main approaches may be identified. The first is to usewhatever techniques
are offered by computer science and AI, including brute force, to create artifacts that
behave in an intelligent way. The second is to develop computational architectures
that closely simulate human behaviour in a variety of domains. The difference be-
tween the two approaches separates the study of AI and cognitive science:

AI can have two purposes. One is to use the power of computers to augment human thinking,
just as we use motors to augment human or horse power. Robotics and expert systems are
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major branches of that. The other is to use a computer’s artificial intelligence to understand
how humans think. In a humanoid way. If you test your programs not merely by what they
can accomplish, but how they accomplish it, then you’re really doing cognitive science;
you’re using AI to understand the human mind. (Herbert Simon, in aninterview with Doug
Stewart [37].)

In specific domains, AI can produce incredible performance.A long-standing
goal of mathematicians and AI researchers was to develop a mechanical program
that could play chess: the basic pattern for search algorithms was determined in
the 1950s [36, 38], and recently algorithms such as Monte Carlo Tree Search [7]
have dominated game-playing research. Humans, of course, are more selective in
their search for good moves, and interactions of the search tree with other forms of
knowledge were explored by Berliner [2] and Michie [31], amongst others. A more
complete overview of this history can be found in Chapter 2 of[19].

In 1996 and 1997 IBM arranged two matches between its Deep Blue computer
and the then World Chess Champion Gary Kasparov; Kasparov won the first match
and Deep Blue won the second match – effectively a tie overall. These matches show
the gulf between what we know of human intelligence and AI. The rapid indexing
and sifting of an extensive pool of prior knowledge by the human counter-balanced
an eight-magnitude difference in computational ability: where the human might cal-
culate around 100 moves in 3 minutes, the computer would calculate of the order
of 100 million moves per second. Chess has been described as the ‘drosophilia of
psychology’ [6], and in these matches we see the need and opportunity for theories
of intelligence to understand how humans efficiently perceive a stimulus, such as a
chess board, and retrieve information suitable for problemsolving.

We present a cognitive-science approach to solving this problem. Cognitive sci-
ence has a long tradition of attempting to understand intelligence using an approach
based around simulation (some of this history is discussed in [1, 16]). The earliest
systematic work in this area is perhaps that of Newell and Simon [33]. The use of
computational models for understanding cognition has grown over time, as their use
offers many advantages. For example, their implementationas computer programs
ensures a high degree of precision, and offers a sufficiency proof that the mecha-
nisms proposed can carry out the tasks under study – something obviously desirable
if practical artificial intelligence is the goal. The extentto which success is reached
in simulating actual human behaviour can be assessed by using measures such as
eye movements, reaction times, and error patterns, as well as the protocol analyses
used by the earlier researchers, and, in more recent times, MRI scans of the work-
ing brain. Recent publications have emphasised the popularity of this approach, and
recent summaries are available in [29, 35].

As a concrete task, we consider the game of chess, and how chess players remem-
ber and retrieve information about specific chess positions. Chess is an ideal domain
for studying complex learning because it provides a well-defined set of stimuli (the
different board positions), there are numerous examples ofgames readily available
for study, and, in particular, chess players are ranked on a numeric scale allowing
gradations in levels of expertise to be identified in a quantitative manner. In com-
petitive chess, players are limited in their thinking time,and success depends on an
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efficient retrieval of information from their prior study and experience to help un-
derstand the position in front of them. Chess positions present various problems to
the player, enabling the researcher to probe the varying contributions of calculation
and intuition in the problem-solving process.

We examine how a cognitive architecture based on the influential chunking and
template theories [6, 20, 22] constructs and uses representations for visual stimuli
using an incremental-learning technique. The form of the representation is governed
both by physical demands of the domain, such as locality, andalso by procedural
requirements for an efficient indexing mechanism and to interact with visual atten-
tion. CHREST (Chunk Hierarchy and REtrieval STructures) [20, 23] has simulated
data on human memory in a number of domains including expert behaviour in board
games, problem solving in physics, first language acquisition, and implicit learning.

We extend CHREST to support the acquisition and retrieval ofcategories, and
compare its performance against a statistical learning algorithm, the support-vector
machine [9, 10]. In spite of the difference between the two algorithms, one using
psychologically-plausible mechanisms and the other statistical optimisation tech-
niques, the overall performance is very similar. We also analyse the trade off be-
tween learning an index for efficient retrieval of chunks against learning the content
of those chunks.

2 Chunking for Expert Performance

2.1 Chunking and Template Theories

There is considerable evidence that much of the informationwe learn is stored as
chunks – perceptual patterns that can be used as units and that also constitute units
of meaning [20]. Perhaps the best evidence for this claim comes from the study of
experts (individuals that vastly outperform others in a specific domain), and in par-
ticular chess experts. In their seminal study, Chase and Simon [6] showed a chess
position for a few seconds, and then asked players to reconstruct it. The analysis
of the latencies between the placements of the pieces, as well as of the patterns of
relations between pairs of pieces, provided clear support for the idea of chunking.
Additional support came from experiments where players hadto copy a given posi-
tion on another board [6], to sort positions [15], and to recall positions presented ei-
ther randomly, by rows and columns, or by chunks [14]. The notion of chunk also in
part explains why experts can remember a considerable amount of briefly-presented
material, in spite of the limits of their short-term memory [6, 11, 32].

One limit of Chase and Simon’s chunking theory is that it assumes that all knowl-
edge is stored in relatively small units (maximum of 5-6 pieces in chess). In fact,
there is substantial evidence that experts also encode information using larger rep-
resentations. This evidence includes verbal protocols in recall and problem solving
experiments [12], and experiments where the material to recall exceeds the amount



Peter C.R. Lane and Fernand Gobet

of material that can be stored in short-term memory [22]. As the capacity of visual
short-term memory is limited to about four chunks [18], the chunking theory pre-
dicts that no more than one board of about 24 pieces could be recalled. However,
Gobet and Simon [22] showed that strong masters can recall upto five positions. To
correct this as well as other weaknesses of the chunking theory, while keeping its
strengths, Gobet and Simon developed the template theory. The key contribution of
the theory, from the point of view of knowledge representation, is that it assumes
that some chunks, which are met often when the agent deals with the environment,
evolve into more complex data structures: templates. Templates encode both fixed
information (the core) and variable information (the slots). Template theory, unlike
most schema theories, proposes specific mechanisms by whichtemplates are con-
structed incrementally when interacting with the environment [23]. While it takes a
long time to learn a new chunk (8 seconds), information can beencoded rapidly in
the slots of a template (250 milliseconds). Together with the notion of chunks, this
explains experts’ superiority in memory experiments with material taken from their
domain of expertise, in particular when presentation timesare brief.

2.2 Importance of specific perceptual knowledge

An important conclusion of research into expertise is that chunks encode specific
and “concrete” information, as opposed to general and abstract information. While
this is less the case with templates, which have slots to encode variable information,
it is still the case that the scope of application of templates is limited by the infor-
mation stored in their core, which is used to identify them inlong-term memory.
Several researchers have objected to this idea that chunks are specific e.g. [30], ar-
guing that this is not efficient computationally – that is, abstract chunks would be
more economical. However, the empirical evidence clearly supports the specificity
hypothesis e.g. [3, 21, 34]. One example will suffice.

Bilali ć [3] studied chess experts specialised in two different opening systems1

with Black (the French and the Sicilian). When confronted with positions from the
opening they did not play (e.g. “French” players with Sicilian positions), players
saw their performance drop by one entire standard deviationin skill, compared
to the case where they had to deal with the opening they were familiar with (e.g.
“French” players with French positions). One standard deviation is a huge differ-
ence in skill. For example, when confronted with an opening she is not specialised
in, the performance of a grandmaster would be similar to thatof an international
master.

1 An opening system is a typical pattern for the first dozen or so movesof a chess game. Expert
players must study opening systems in depth to compete successfully, and usually master five or
six such systems with each colour [8].



Using Chunks to Categorise Chess Positions

3 CHREST

In this section, we summarise those aspects of CHREST which relate to informa-
tion learning and retrieval. More detailed descriptions ofCHREST are available
in [12, 20]. Although we focus on chess, CHREST’s mechanismshave been shown
to generalise to other board games such as Awalé [17] and Go [4], as well as other
domains such as language acquisition [13, 24]. An implementation of CHREST is
available athttp://chrest.info .
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Fig. 1 CHREST cognitive architecture

3.1 Overview

Fig. 1 shows the main components of the CHREST architecture.These include in-
put/output, a long-term memory (LTM) and a short-term meory(STM). The STM
holds the current workingrepresentation of the stimuli being perceived; this repre-
sentation is a set of pointers into LTM. STM has a limited capacity – the typical size
is 4 chunks, for visual information. Each chunk is a pointer to an item held in LTM,
and this item can contain varying amounts of information. The STM is populated
with chunks as the eye moves over the stimulus. As the eye perceives a set of pieces
on a chess board, it sorts those pieces through an index, and places the retrieved
chunk into STM. The information in STM is then available for further learning,
problem solving, or other cognitive processing. An exampleof the representation
and how it is retrieved can be found in the next section.

The index into LTM is represented as a discrimination network; Fig. 3 gives an
example. Nodes within LTM are connected withtest links, each test link containing
one or more primitives from the target domain which must be matched for a sorted
pattern to pass down the test link. Each node contains a pattern, itsimage; these node
images form the chunks and templates stored within the network. This network is
efficient, in the sense that it can rapidly index sufficient quantities of information
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to support expert performance [25]. CHREST supports multiple modalities (kinds
of input), and can form links between nodes of different types, such as visual and
verbal information. The STM contains separate lists of chunks for visual and verbal
information, and the root of the LTM first sorts patterns intothe visual or verbal
networks depending on their modality.

3.2 Learning and Representing Chunks

As with any modelling experiment, we begin with some assumptions about what a
person knows. When modelling chess players, we assume that the player can recog-
nise an individual chess piece and their location. The ‘primitives’ for the represen-
tation are known as ‘item-on-square’, and are represented as [P 3 4] , denoting
the name of the piece, the row and column number.2 Fig. 2 gives an example posi-
tion. When the eye perceives the board, it sees any piece it is looking at, as well as
any pieces in its periphery; the size of the periphery can be varied, but in our chess
experiments the eye is assumed to perceive a 5×5 grid of the chess board. Thus,
looking at square (3, 7) of the board in Fig. 2, the eye would retrieve the list of
pieces<[Q 1 6] [N 4 6] [P 4 5] [P 5 6] [P 1 7] [P 2 7]> .

Fig. 2 Example chess position (left) and sequence of eye fixations (right)

The list of pieces is known as a ‘pattern’. The perceived pattern is sorted through
the model’s discrimination network by checking for the presence of pieces on the
network’s test links. When sorting stops, the node reached iscompared with the
perceived pattern to determine if further learning should occur. If the perceived pat-
tern contains everything in the retrieved pattern and some more, thenfamiliarisation
occurs to add some more information to the stored chunk. If the perceived pattern

2 Although the item-on-square representation has its limitations, it is sufficient for modelling global
properties of the chess board, see [27] for a discussion.
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contains some contradicting information to the retrieved pattern (such as a piece
on a different square), thendiscrimination occurs, to add a further test and node
to the network. Thus, discrimination increases the number of distinct chunks that
the model can identify, whereas familiarisation increasesthe amount of informa-
tion that the model can retrieve about that chunk. Fig. 3 illustrates the two learning
mechanisms.

(a) After learning[P 2 5] [K 1 5] .

(b) Discrimination after seeing[P 2 5] [R 1 5] [K 1 7]

(c) Familiarising the pattern[P 2 5] [R 1 5] [K 1 7]

Fig. 3 Illustration of familiarisation/discrimination learning process
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3.3 Eye Fixations

CHREST combines the identification and learning of chunks with an active attention
mechanism, for guiding its eye about the chess board. Essentially, the implicit goal
in perception is to locate the largest chunks in LTM which represent the given stim-
ulus. Once a chunk is identified and placed in STM, the location of a piece on one
of the test links is used as the next fixation point; in this way, the LTM ‘drives’ the
eye fixations to locations likely to contain information to recognise a chunk deeper
in the LTM index, and hence containing more information.

Fixations:
(3, 6) Random place heuristic
(4, 5) Random item heuristic
(6, 7) Random item heuristic
(7, 7) LTM heuristic
(8, 6) Proposed movement heuristic
(8, 5) Random place heuristic
(1, 6) Random place heuristic
(7, 1) LTM heuristic
(6, 2) Random item heuristic
(6, 3) Proposed movement heuristic
(7, 4) Random item heuristic
(4, 6) LTM heuristic
(5, 4) Proposed movement heuristic
(4, 6) LTM heuristic
(5, 4) Proposed movement heuristic
(4, 6) LTM heuristic
(3, 4) Proposed movement heuristic
(3, 3) LTM heuristic
(5, 3) Random place heuristic
(5, 6) Proposed movement heuristic

Chunks used:
Node: 3371 < [P 4 5] [P 5 6] [P 6 7]

[P 7 6] [P 8 7] >
Node: 5780 < [P 1 7] [P 2 7] >
Node: 435 < [P 4 5] [p 2 3] [p 4 4] [b 3 3] >
Node: 788 < [P 5 6] [P 6 7] [P 7 6] [P 8 7]

[K 7 8] [B 7 7] [b 7 5] [N 4 7] >
Template:

filled item slots:
[R 6 8]

Fig. 4 An illustration of the eye fixations made by the model

As an illustration of how the eye fixations work, a model of chess positions was
trained from a set of 8,644 positions, training continuing until the model’s LTM
contained 10,000 chunks, with each position scanned for 20 fixations. An indication
of the fixations is shown in Fig. 2 (right). Fig. 4 shows a traceof the model’s eye
fixations on the position in Fig. 2, where the coordinates on each line refer to the
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new location, and the description the reason for the move to that location. (Detailed
analysis of the fit between the model’s attention mechanismsand human behaviour
is available [12].)

The eye fixations show the range of heuristics used in retrieving information: the
eye initially is located at a random central square, and thenproceeds using one of a
set of heuristics. In this example, four heuristics are illustrated.

1. Random item fixates a previously unseen item within the field of view, but not at
the centre.

2. Random place fixates a previously unseen square within the field of view, but not
the centre.

3. LTM uses the largest chunk currently in STM to guide the next fixation. The
heuristic proposes the location of information required topass one of its test
links.

4. Proposed move uses knowledge of how chess pieces move to guide the eye to
objects of attack, even if located on the far side of the board.

At the end of its cycle of fixations, the model’s STM contains pointers to nodes
3371, 5780, 435 and 788. The trace includes the images of these retrieved nodes;
note that the last chunk listed was a template, and has one slot filled. The information
in these four chunks and their links is the representation ofthe current stimulus.

3.4 Learning and retrieving categorisations

We now extend CHREST’s mechanisms to include the acquisition of interpretations
of chess positions. The technique we use is based on that for learning links across
modalities [28]. The idea is that information about the recognised chunks is used to
determine the position’s category. Being able to categorise positions is important for
chess players, as this provides crucial information about the kind of plans to follow
and moves to play. In particular, knowing the opening the position comes from is
indicative of the strategic and tactical themes of the boardposition.

As each position is scanned, a count is maintained for each chunk determining
how often that chunk is associated with the position’s category: this count forms the
weighting of the chunk to that category. For example, in the experimentdescribed
below the categories are the two openings, the French and Sicilian. Each chunk will
have a count of how often it has been associated with each of these two openings.
Smaller chunks (such as a pair of pawns) frequently occur in many categories, but
other chunks are more indicative of particular openings (such as the line of central
pawns characteristic of the French defence).

For categorising a given position, the model records how many chunks it per-
ceives which are indicative of a given category. If there is apreponderance of chunks
for one category, then that is the category for the position.If there is a tie, then the
weightings for each chunk’s association to a category are totalled, and the highest
weighting wins.
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4 Experiment in Categorising Chess Positions

Our experiment investigates how our model can learn to separate chess positions into
their respective opening. A dataset of chess positions fromtwo openings was cre-
ated. The dataset contains 250 positions from the French defence and 250 positions
from the Sicilian defence. We run a categorisation experiment on these data with a
support-vector machine, to establish a base-line performance, and with CHREST.

As the test datasets may have an imbalanced distribution of classes, the geometric
mean of accuracy is used as a performance measure: if the accuracy on the two
individual classes isa1 anda2, then the geometric mean is

√

(a1×a2). This measure
has the advantage of treating the two classes equally, and severely penalising poor
performance in any one [26].

4.1 Support Vector Machine

For the support-vector machine experiment, the chess data were converted into fea-
tures representing the 64-squares on the chess-board as a 64-element vector. Each
element of the vector holds a number representing the piece at that location: 0 for
empty, 1 for white pawn, up to 12 for black king. These numberswere then scaled
into the range[0,1], and a 0/1 class label applied representing if the position was
from the French or Sicilian opening.

A support-vector machine model was created using the libsvmlibrary [5]. The
data were split randomly into 70% training and 30% testing. The training data were
further split 4:1 for cross validation. A grid search for a radial-basis function kernel
was performed over costs{2−5

,2−3
,2−1

,20
,21

,23
,25

,28
,210

,213
,215} and gammas

{2−15
,2−12

,2−8
,2−5

,2−3
,2−1

,21
,23

,25
,27

,29}.
The best model had 112 support vectors and obtained a geometric mean of per-

formance of 0.80 on the held-out test set.

4.2 CHREST

The dataset was split, randomly, into 70% for training and 30% for testing. A model
was trained using the training data. Each position was scanned for 20 fixations, with
the model learning both its discrimination network and weighted links to categories.

The model was then tested on the held-out test data. Each position was scanned
for 20 fixations and the weighted categorisations retrievedfor all of the perceived
chunks to retrieve a category for the scanned position, as described above. This
train/test process was repeated 10 times for each number of training cycles. The
number of training cycles was varied from 1 to 40.

Fig. 5 shows the average over the 10 runs of the geometric meanof performance
on the held-out test set, with error bars indicating±1 standard deviation. The per-
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formance quickly reaches and maintains a level between 0.75and 0.80, which is
equivalent to the performance of the support-vector machine model.
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Fig. 5 Average geometric-mean performance against training cycles.

4.3 Specialisation in long-term memory

The long-term memory network grows both in size (the number of nodes) and in
content (the size of the chunks stored in the nodes).

Fig. 6 shows a typical growth in the network size over time. The x-axis represents
increasing number of training cycles, and the y-axis the average number of chunks
within the network. The points are averaged from ten runs of the model, and error
bars to±1 s.d. are drawn. The graph shows a growth in network size overtime,
with increasing variation between models as the network gets larger. The rate of
growth slows with increasing training cycles, as the model becomes familiar with
the training data.

Fig. 7 shows a typical growth in the network content over time. The x-axis rep-
resents increasing number of training cycles, and the y-axis the average number
of pieces. The solid line is the average size of chunks storedin all the nodes of the
LTM, and the dashed line is the average depth of the nodes in the network. The depth
approximates the amount of information required toretrieve a chunk, whereas the
content gives the amount of informationstored as a chunk. The points are averaged
from ten runs of the model, and error bars to±1 s.d. are drawn, but are relatively
small (less than 0.5%).

The interesting aspect of this graph is the shape of the two lines. The line for the
average depth increases sharply initially, as CHREST learns the general structure
of the data. After about 5 passes through the data, this curvebegins to flatten out,
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Fig. 7 Typical increase in average network depth and average chunk size against training cycles.

with an average depth of approximately 4. This indicates that CHREST has learnt
the broad structure of the data, and correlates well with thechange in rate of growth
shown in Fig. 6.

The line for the average chunk size shows a more gradual increase over time, as
the model acquires familiarity with the domain. There is a cross-over point at 14
training cycles when the average chunk size becomes larger than the average chunk
depth. This indicates that CHREST is beginning to retrieve more information than
it needs to perceive, and so is increasingly able to predict the structure of a position
from relatively small cues. For the largest network, CHRESTwill typically retrieve
50% more information than it requires to access that information.
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5 Conclusion

We have discussed how human performance in the game of chess presents a chal-
lenge to theories of artificial intelligence: how do humans acquire and efficiently
index a large store of knowledge for efficient problem solving? We have presented
the CHREST model of human perception and learning, and extended it to handle a
task of categorising chess positions based on the opening they come from. Experi-
mental results demonstrate that the the process of learningchunks enables CHREST
to categorise positions with a similar reliability to a statistical learning algorithm.
Analysis of the network over time illustrates the trade off in learning how toretrieve
chunks against learning thecontent of those chunks.

In future work, we will extend this model of categorisation to support more com-
plex interpretations of chess positions, interpretationsto support quality game play-
ing with a minimum of look-ahead search.
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