Using Chunks to Categorise Chess Positions

Peter C.R. Lane and Fernand Gobet

Abstract Expert computer performances in domains such as chess ireved
using techniques different from those which can be used bynaahn expert. The
match between Gary Kasparov and Deep Blue shows that hurpartise is able to
balance an eight-magnitude difference in computationaédpTheories of human
expertise, in particular the chunking and template theppeovide detailed compu-
tational models of human long-term memory, how it is acqlizad retrieved. We
extend an implementation of the template theory, CHRESBufport the learn-
ing and retrieval of categorisations of chess positions.e2tended model provides
equivalent performance to a support-vector machine irgcaiging chess positions
into opening, and reveals how learning for retrieval redatelearning for content.

1 Introduction

Building a machine which exhibits intelligent behaviourshzeen a long sought-
after dream, particularly in the fields of artificial intgiénce (Al) and cognitive sci-
ence. Two main approaches may be identified. The first is tavhagever techniques
are offered by computer science and Al, including brutedpta create artifacts that
behave in an intelligent way. The second is to develop coatjmmal architectures
that closely simulate human behaviour in a variety of domaliie difference be-
tween the two approaches separates the study of Al and a@gsiience:

Al can have two purposes. One is to use the power of computerstosatigpuman thinking,
just as we use motors to augment human or horse power. Robotics jgerd gystems are
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major branches of that. The other is to use a computer’s artiiint&ligence to understand
how humans think. In a humanoid way. If you test your programs noéinéy what they
can accomplish, but how they accomplish it, then you're realipgl@ognitive science;
you're using Al to understand the human mind. (Herbert Simon, iimt@mview with Doug
Stewart [37].)

In specific domains, Al can produce incredible performamcdong-standing
goal of mathematicians and Al researchers was to developcaan&al program
that could play chess: the basic pattern for search algosittvas determined in
the 1950s [36, 38], and recently algorithms such as MontéoCaee Search [7]
have dominated game-playing research. Humans, of coussenare selective in
their search for good moves, and interactions of the seagehaith other forms of
knowledge were explored by Berliner [2] and Michie [31], amgst others. A more
complete overview of this history can be found in Chapter PLf.

In 1996 and 1997 IBM arranged two matches between its Deep &mputer
and the then World Chess Champion Gary Kasparov; Kasparawhefirst match
and Deep Blue won the second match — effectively a tie ovaraise matches show
the gulf between what we know of human intelligence and Ale Tépid indexing
and sifting of an extensive pool of prior knowledge by the lamnsounter-balanced
an eight-magnitude difference in computational abilitjrere the human might cal-
culate around 100 moves in 3 minutes, the computer wouldilzte of the order
of 100 million moves per second. Chess has been describéxd &drbsophilia of
psychology’ [6], and in these matches we see the need andtapfiy for theories
of intelligence to understand how humans efficiently pereai stimulus, such as a
chess board, and retrieve information suitable for proldeiving.

We present a cognitive-science approach to solving thislene. Cognitive sci-
ence has a long tradition of attempting to understand ig&gice using an approach
based around simulation (some of this history is discuss¢tl, i16]). The earliest
systematic work in this area is perhaps that of Newell ando8if83]. The use of
computational models for understanding cognition has grover time, as their use
offers many advantages. For example, their implementatiocomputer programs
ensures a high degree of precision, and offers a sufficiermyf phat the mecha-
nisms proposed can carry out the tasks under study — sorgethuously desirable
if practical artificial intelligence is the goal. The extéatwhich success is reached
in simulating actual human behaviour can be assessed by msasures such as
eye movements, reaction times, and error patterns, as svtiegprotocol analyses
used by the earlier researchers, and, in more recent timessbans of the work-
ing brain. Recent publications have emphasised the paputdithis approach, and
recent summaries are available in [29, 35].

As a concrete task, we consider the game of chess, and howmglagers remem-
ber and retrieve information about specific chess positidhess is an ideal domain
for studying complex learning because it provides a wefingel set of stimuli (the
different board positions), there are numerous examplgsuwofes readily available
for study, and, in particular, chess players are ranked amnzenic scale allowing
gradations in levels of expertise to be identified in a qiatie manner. In com-
petitive chess, players are limited in their thinking tiread success depends on an
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efficient retrieval of information from their prior study @m®xperience to help un-
derstand the position in front of them. Chess positionsegmegarious problems to
the player, enabling the researcher to probe the varyingibations of calculation

and intuition in the problem-solving process.

We examine how a cognitive architecture based on the infelesttunking and
template theories [6, 20, 22] constructs and uses repaasamg for visual stimuli
using an incremental-learning technique. The form of tipeasentation is governed
both by physical demands of the domain, such as locality,adswl by procedural
requirements for an efficient indexing mechanism and tadctewith visual atten-
tion. CHREST (Chunk Hierarchy and REtrieval STructure$), [23] has simulated
data on human memory in a number of domains including exgé@viour in board
games, problem solving in physics, first language acqaisitind implicit learning.

We extend CHREST to support the acquisition and retrievalabégories, and
compare its performance against a statistical learningrigfgn, the support-vector
machine [9, 10]. In spite of the difference between the tvgmathms, one using
psychologically-plausible mechanisms and the otherssieai optimisation tech-
niques, the overall performance is very similar. We alsdyaeathe trade off be-
tween learning an index for efficient retrieval of chunksiagelearning the content
of those chunks.

2 Chunking for Expert Performance

2.1 Chunking and Template Theories

There is considerable evidence that much of the informatierearn is stored as
chunks — perceptual patterns that can be used as units gralgbaonstitute units
of meaning [20]. Perhaps the best evidence for this claimesoffom the study of
experts (individuals that vastly outperform others in acfpedomain), and in par-
ticular chess experts. In their seminal study, Chase an@1s[8] showed a chess
position for a few seconds, and then asked players to racmhst. The analysis
of the latencies between the placements of the pieces, assvef the patterns of
relations between pairs of pieces, provided clear suppotthe idea of chunking.
Additional support came from experiments where playerstbadpy a given posi-
tion on another board [6], to sort positions [15], and to Hquasitions presented ei-
ther randomly, by rows and columns, or by chunks [14]. Théomadf chunk also in
part explains why experts can remember a considerable aroblniefly-presented
material, in spite of the limits of their short-term memoéy 11, 32].

One limit of Chase and Simon’s chunking theory is that it agssithat all knowl-
edge is stored in relatively small units (maximum of 5-6 p& chess). In fact,
there is substantial evidence that experts also encodemafmn using larger rep-
resentations. This evidence includes verbal protocoleéall and problem solving
experiments [12], and experiments where the material @llregceeds the amount
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of material that can be stored in short-term memory [22].esdapacity of visual
short-term memory is limited to about four chunks [18], tieicking theory pre-
dicts that no more than one board of about 24 pieces coulddadied. However,
Gobet and Simon [22] showed that strong masters can rec#ll fiye positions. To
correct this as well as other weaknesses of the chunkingythebile keeping its
strengths, Gobet and Simon developed the template theloeykdy contribution of
the theory, from the point of view of knowledge represeptatis that it assumes
that some chunks, which are met often when the agent dedighétenvironment,
evolve into more complex data structures: templates. Tateplencode both fixed
information (the core) and variable information (the slof@mplate theory, unlike
most schema theories, proposes specific mechanisms by vemghates are con-
structed incrementally when interacting with the enviremt{23]. While it takes a
long time to learn a new chunk (8 seconds), information caerfm®ded rapidly in
the slots of a template (250 milliseconds). Together withribtion of chunks, this
explains experts’ superiority in memory experiments wittenial taken from their
domain of expertise, in particular when presentation tiaresbrief.

2.2 Importance of specific perceptual knowledge

An important conclusion of research into expertise is thnainks encode specific
and “concrete” information, as opposed to general and attstiformation. While
this is less the case with templates, which have slots todeneariable information,
it is still the case that the scope of application of tem@asdimited by the infor-
mation stored in their core, which is used to identify themoing-term memory.
Several researchers have objected to this idea that chualspecific e.g. [30], ar-
guing that this is not efficient computationally — that isst@hct chunks would be
more economical. However, the empirical evidence clearppsrts the specificity
hypothesis e.g. [3, 21, 34]. One example will suffice.

Bilali¢ [3] studied chess experts specialised in two differennipesystems
with Black (the French and the Sicilian). When confrontechvgibsitions from the
opening they did not play (e.g. “French” players with Sanilipositions), players
saw their performance drop by one entire standard deviaticskill, compared
to the case where they had to deal with the opening they werdida with (e.g.
“French” players with French positions). One standard atémn is a huge differ-
ence in skill. For example, when confronted with an openimgis not specialised
in, the performance of a grandmaster would be similar to dfi@n international
master.

1 An opening system is a typical pattern for the first dozen or so mof/aschess game. Expert
players must study opening systems in depth to compete successfdllysaally master five or
six such systems with each colour [8].
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3 CHREST

In this section, we summarise those aspects of CHREST whlelterto informa-
tion learning and retrieval. More detailed descriptionsCHHREST are available
in [12, 20]. Although we focus on chess, CHREST'’s mechanisave been shown
to generalise to other board games such as &j#&l] and Go [4], as well as other
domains such as language acquisition [13, 24]. An impleaimmt of CHREST is
available ahttp://chrest.info

Input/Output mechanisms Long-term memory
- Patterns are input to
or output from system
A Stores patterns

and association

between patterns

Short-Term Memories

Visual

chunking
Verbal ‘ ‘ ‘ s ‘ ‘ network

Fig. 1 CHREST cognitive architecture

3.1 Overview

Fig. 1 shows the main components of the CHREST architeclimese include in-
put/output, a long-term memory (LTM) and a short-term mg@yM). The STM
holds the current workingepresentation of the stimuli being perceived; this repre-
sentation is a set of pointers into LTM. STM has a limited @diya- the typical size
is 4 chunks, for visual information. Each chunk is a pointeat item held in LTM,
and this item can contain varying amounts of informatione BTM is populated
with chunks as the eye moves over the stimulus. As the eyeiperca set of pieces
on a chess board, it sorts those pieces through an index,lacesphe retrieved
chunk into STM. The information in STM is then available farther learning,
problem solving, or other cognitive processing. An exangiléhe representation
and how it is retrieved can be found in the next section.

The index into LTM is represented as a discrimination nekywbig. 3 gives an
example. Nodes within LTM are connected wigt links, each test link containing
one or more primitives from the target domain which must béched for a sorted
pattern to pass down the test link. Each node contains apatt mage; these node
images form the chunks and templates stored within the nmktwinis network is
efficient, in the sense that it can rapidly index sufficienaugfities of information
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to support expert performance [25]. CHREST supports nieltipodalities (kinds

of input), and can form links between nodes of different gypich as visual and
verbal information. The STM contains separate lists of &sufor visual and verbal

information, and the root of the LTM first sorts patterns itite visual or verbal

networks depending on their modality.

3.2 Learning and Representing Chunks

As with any modelling experiment, we begin with some assuongtabout what a
person knows. When modelling chess players, we assume éhpliatyer can recog-
nise an individual chess piece and their location. The ‘fiives’ for the represen-
tation are known as ‘item-on-square’, and are represerd¢id 8 4] , denoting
the name of the piece, the row and column nunitfeig. 2 gives an example posi-
tion. When the eye perceives the board, it sees any pieceoibksrilg at, as well as
any pieces in its periphery; the size of the periphery canaied, but in our chess
experiments the eye is assumed to perceivexa grid of the chess board. Thus,
looking at square (3, 7) of the board in Fig. 2, the eye woutdaee the list of
pieces<[Q 1 6] [N 4 6] [P 4 5] [P56][P17][P 27>

r 1 r 1
P Plklp| 2 |(p|b Mk |p| 2
pla 3 P | @HeA® 3
n P P 4 In| [0Mp | 4
P 5 /"'\ i___,q) 5
0 NP P 5 |Gt P 6
PP PIE [P 7 PP P 7
R K g Rk a8

1 2 3456 7 8 1 2 3 45 68 7 8

Fig. 2 Example chess position (left) and sequence of eye fixationg)righ

The list of pieces is known as a ‘pattern’. The perceivedgpatis sorted through
the model’s discrimination network by checking for the erese of pieces on the
network’s test links. When sorting stops, the node reachesiispared with the
perceived pattern to determine if further learning showlclo. If the perceived pat-
tern contains everything in the retrieved pattern and sowre therfamiliarisation
occurs to add some more information to the stored chunkelpérceived pattern

2 Although the item-on-square representation has its limitatiis sufficient for modelling global
properties of the chess board, see [27] for a discussion.
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contains some contradicting information to the retrievattggn (such as a piece
on a different square), thediscrimination occurs, to add a further test and node
to the network. Thus, discrimination increases the numbelistinct chunks that
the model can identify, whereas familiarisation increabesamount of informa-
tion that the model can retrieve about that chunk. Fig. itlates the two learning
mechanisms.

(a) After learningP 2 5] [K 1 5]

Node: 5
<P-2-5R-1-5K-1-7%$ >

Node: 3
< P-2-5K-1-5 §>

Fig. 3 lllustration of familiarisation/discrimination learning press
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3.3 Eye Fixations

CHREST combines the identification and learning of chunkk am active attention
mechanism, for guiding its eye about the chess board. Babgrthe implicit goal

in perception is to locate the largest chunks in LTM whichresent the given stim-
ulus. Once a chunk is identified and placed in STM, the locatioa piece on one
of the test links is used as the next fixation point; in this whg LTM ‘drives’ the
eye fixations to locations likely to contain information &cognise a chunk deeper
in the LTM index, and hence containing more information.

Fixations:

(3, 6) Random place heuristic

(4, 5) Random item heuristic

(6, 7) Random item heuristic

(7, 7) LTM heuristic

(8, 6) Proposed movement heuristic

(8, 5) Random place heuristic

(1, 6) Random place heuristic

(7, 1) LTM heuristic

(6, 2) Random item heuristic

(6, 3) Proposed movement heuristic

(7, 4) Random item heuristic

(4, 6) LTM heuristic

(5, 4) Proposed movement heuristic

(4, 6) LTM heuristic

(5, 4) Proposed movement heuristic

(4, 6) LTM heuristic

(3, 4) Proposed movement heuristic

(3, 3) LTM heuristic

(5, 3) Random place heuristic

(5, 6) Proposed movement heuristic

Chunks used:

Node: 3371 < [P 4 5] [P 5 6] [P 6 7]
[P76][P8T7] >

Node: 5780 < [P 1 7] [P 2 7] >

Node: 435 < [P 4 5] [p23][p 44 [b33 >

Node: 788 < [P 5 6] [P 6 7] [P 7 6] [P 8 7]
[K 78 [B77 [b75I[N4T7] >

Template:
filled item slots:
[R 6 8]

Fig. 4 Anillustration of the eye fixations made by the model

As an illustration of how the eye fixations work, a model of €heositions was
trained from a set of 8,644 positions, training continuimgiluthe model’'s LTM
contained 10,000 chunks, with each position scanned foxa€@dns. An indication
of the fixations is shown in Fig. 2 (right). Fig. 4 shows a traf¢he model’s eye
fixations on the position in Fig. 2, where the coordinates achdine refer to the
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new location, and the description the reason for the moveabldcation. (Detailed
analysis of the fit between the model’s attention mechanamshuman behaviour
is available [12].)

The eye fixations show the range of heuristics used in rétigenformation: the

eye initially is located at a random central square, and fiteneeds using one of a
set of heuristics. In this example, four heuristics aresthiated.

1.

2.

Random item fixates a previously unseen item within the field of view, boit ait
the centre.
Random place fixates a previously unseen square within the field of viewnlot
the centre.

. LTM uses the largest chunk currently in STM to guide the nextitiratThe

heuristic proposes the location of information requirech&ss one of its test
links.

. Proposed move uses knowledge of how chess pieces move to guide the eye to

objects of attack, even if located on the far side of the board

At the end of its cycle of fixations, the model’s STM contaimsrpers to nodes

3371, 5780, 435 and 788. The trace includes the images o tietrseved nodes;
note that the last chunk listed was a template, and has otrfélstb The information
in these four chunks and their links is the representatich@turrent stimulus.

3.4 Learning and retrieving categorisations

We now extend CHREST's mechanisms to include the acquisitianterpretations
of chess positions. The technique we use is based on thadorihg links across
modalities [28]. The idea is that information about the grdeed chunks is used to
determine the position’s category. Being able to categ@isitions is important for
chess players, as this provides crucial information aldmikind of plans to follow
and moves to play. In particular, knowing the opening thatfmsscomes from is
indicative of the strategic and tactical themes of the bpaition.

As each position is scanned, a count is maintained for eaghkctietermining

how often that chunk is associated with the position’s aatgghis count forms the
weighting of the chunk to that category. For example, in the experindestribed
below the categories are the two openings, the French aild&i&ach chunk will
have a count of how often it has been associated with eaclteséttwo openings.
Smaller chunks (such as a pair of pawns) frequently occuranyntategories, but
other chunks are more indicative of particular openingst{sas the line of central
pawns characteristic of the French defence).

For categorising a given position, the model records howyn@drunks it per-

ceives which are indicative of a given category. If therepseponderance of chunks
for one category, then that is the category for the positidtnere is a tie, then the

weightings for each chunk’s association to a category dedled, and the highest
weighting wins.
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4 Experiment in Categorising Chess Positions

Our experiment investigates how our model can learn to sépahess positions into
their respective opening. A dataset of chess positions fieonopenings was cre-
ated. The dataset contains 250 positions from the Frene@mdefand 250 positions
from the Sicilian defence. We run a categorisation expartroe these data with a
support-vector machine, to establish a base-line perfocseand with CHREST.

As the test datasets may have an imbalanced distributidasges, the geometric
mean of accuracy is used as a performance measure: if theaagoon the two
individual classes ia; anday, then the geometric meanj;ﬁal x ap). This measure
has the advantage of treating the two classes equally, aedebg penalising poor
performance in any one [26].

4.1 Support Vector Machine

For the support-vector machine experiment, the chess da@aeonverted into fea-
tures representing the 64-squares on the chess-board aslenédnt vector. Each
element of the vector holds a number representing the piettelocation: 0 for
empty, 1 for white pawn, up to 12 for black king. These numlvezge then scaled
into the rang€g0, 1], and a 0/1 class label applied representing if the positiaa w
from the French or Sicilian opening.

A support-vector machine model was created using the libgwary [5]. The
data were split randomly into 70% training and 30% testirge fraining data were
further split 4:1 for cross validation. A grid search for died-basis function kernel
was performed over cosf@ >, 273 21 20 21 23 25 28 210 213 2151 and gammas
{2715’ 2712727872757273’271’21723725’27’29}_

The best model had 112 support vectors and obtained a geometan of per-
formance of 0.80 on the held-out test set.

4.2 CHREST

The dataset was split, randomly, into 70% for training an%h30r testing. A model
was trained using the training data. Each position was szhfor 20 fixations, with
the model learning both its discrimination network and viatégl links to categories.

The model was then tested on the held-out test data. Eactioposias scanned
for 20 fixations and the weighted categorisations retrideeall of the perceived
chunks to retrieve a category for the scanned position, asritbed above. This
train/test process was repeated 10 times for each numbeaining cycles. The
number of training cycles was varied from 1 to 40.

Fig. 5 shows the average over the 10 runs of the geometric ofgarformance
on the held-out test set, with error bars indicatihty standard deviation. The per-
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formance quickly reaches and maintains a level between &d50.80, which is
equivalent to the performance of the support-vector machiodel.

Average Performance on Test Set

08 !

0.6

04

Geometric Mean

0.2

) ) ) ) ) ) per!orme‘mce
0 5 10 5 20 25 30 35 40
Training Cycles

Fig. 5 Average geometric-mean performance against training cycles.

4.3 Specialisation in long-term memory

The long-term memory network grows both in size (the numlieroales) and in
content (the size of the chunks stored in the nodes).

Fig. 6 shows a typical growth in the network size over timee Xkaxis represents
increasing number of training cycles, and the y-axis theayenumber of chunks
within the network. The points are averaged from ten runfiefrhodel, and error
bars to+1 s.d. are drawn. The graph shows a growth in network size towe,
with increasing variation between models as the network eger. The rate of
growth slows with increasing training cycles, as the modsldmes familiar with
the training data.

Fig. 7 shows a typical growth in the network content over tiifige x-axis rep-
resents increasing number of training cycles, and the y-toeé average number
of pieces. The solid line is the average size of chunks stioratl the nodes of the
LTM, and the dashed line is the average depth of the nodes imetwork. The depth
approximates the amount of information requiredewieve a chunk, whereas the
content gives the amount of informatistored as a chunk. The points are averaged
from ten runs of the model, and error barstt@ s.d. are drawn, but are relatively
small (less than 0.5%).

The interesting aspect of this graph is the shape of the tvesliThe line for the
average depth increases sharply initially, as CHREST ¢etdra general structure
of the data. After about 5 passes through the data, this hegims to flatten out,
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Growth of Network Size

20000

15000

10000

Number of Nodes

5000

| average size

0 L L L L L L
0 5 10 15 20 25 30 35 40

Training Cycles

Fig. 6 Typical increase in average network size.

Growth of Network Content

*
B s )
B e

B

Number of Pieces

average size
__ average depth +--x-—

15 . .20 25 30 35 40
Training Cycles

Fig. 7 Typical increase in average network depth and average chz@lagainst training cycles.

with an average depth of approximately 4. This indicates @4REST has learnt
the broad structure of the data, and correlates well witlckizage in rate of growth
shown in Fig. 6.

The line for the average chunk size shows a more gradualdserever time, as
the model acquires familiarity with the domain. There is assrover point at 14
training cycles when the average chunk size becomes ldrgertihe average chunk
depth. This indicates that CHREST is beginning to retrieeeeninformation than
it needs to perceive, and so is increasingly able to prelécstructure of a position
from relatively small cues. For the largest network, CHRE@ITtypically retrieve
50% more information than it requires to access that infdiona
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5 Conclusion

We have discussed how human performance in the game of cressmnfs a chal-
lenge to theories of artificial intelligence: how do humanguare and efficiently
index a large store of knowledge for efficient problem say?@we have presented
the CHREST model of human perception and learning, and é&téit to handle a
task of categorising chess positions based on the opengygetime from. Experi-
mental results demonstrate that the the process of leachimtks enables CHREST
to categorise positions with a similar reliability to a &#tctal learning algorithm.
Analysis of the network over time illustrates the trade offaarning how taetrieve
chunks against learning tlentent of those chunks.

In future work, we will extend this model of categorisatiorsupport more com-
plex interpretations of chess positions, interpretattorsupport quality game play-
ing with a minimum of look-ahead search.
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